
Self-sovereign Identity:
Development of an Implementation-based

Evaluation Framework for Verifiable
Credential SDKs

Brandenburg University of Applied Sciences
Department of Economics

Master’s Thesis

submitted by
Philipp Bolte

October 22nd, 2021

First supervisor: Prof. Dr. rer. nat. Vera G. Meister
Second supervisor: Jonas Jetschni, M.Sc.

Statutory Declaration

I hereby attest that I have written this thesis independently and have not used any
other sources or materials, and that the thesis has not been submitted in the same
or similar form to any other examining authority.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen Quellen oder Hilfsmittel benutzt habe und dass die Arbeit in gleicher
oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt wurde.

Brandenburg, October 22nd, 2021

Philipp Bolte

I

Abstract

In an increasingly globalized and digitized world, the functioning of societies depends
on digital identities. These are commonly based on centralized or federated technolo-
gies controlled by private organizations. Self-sovereign Identity offers a new approach
to digital identities, giving complete control back to users and breaking dependencies
on middlemen. Previous literature on this has mostly focused on foundational work
and less on practical developer-oriented topics. This thesis tries to close this gap
by providing an overview of existing solutions and by presenting a new evaluation
framework for such solutions based on a reference implementation. The goal is to
provide a baseline to support developers in integrating Self-sovereign Identity into
their projects.

In einer zunehmend globalisierten und digitalisierten Welt ist das Funktionieren von
Gesellschaften von digitalen Identitäten abhängig. Diese basieren häufig auf zen-
tralisierten oder föderierten Technologien kontrolliert durch private Organisationen.
Self-sovereign Identity bietet dabei einen neuen Ansatz für digitale Identitäten, in
dem den Nutzern die komplette Kontroller zurückgegeben wird und die Abhängigkeiten
zu Mittelsmännern aufgelöst wird. Bisherige Literatur hatte sich dazu vorwiegend
auf Grundlagenarbeit und weniger auf praxisrelevante, entwicklerorientierte Themen
konzentriert. Diese Lücke wird in dieser Arbeit versucht zu schließen, indem zum
einen eine Übersicht über bestehende Lösungen angefertigt wird und zum anderen
ein neues Bewertungsrahmenwerk für solche Lösungen auf Basis einer Referenz-
implementierung vorgestellt wird. So sollen erste Grundlagen geschaffen werden,
um Entwickler bei der Integration von Self-sovereign Identity in ihre Projekte zu
unterstützen.

III

Contents

1 Introduction 1
1.1 Scope of Work . 1
1.2 Related Work . 2
1.3 Methodology . 3

2 Self-sovereign Identity 5
2.1 Identity . 7
2.2 Stages of Digital Identity . 9

2.2.1 Centralized Identity . 9
2.2.2 Federated Identity . 10
2.2.3 User-Centric Identity . 10
2.2.4 Self-sovereign Identity . 11

2.3 Standards . 13
2.3.1 Decentralized Identifier . 13
2.3.2 Verifiable Credentials . 16

2.4 Architecture . 19
2.4.1 Roles . 19
2.4.2 Technology Stack . 21

2.5 Recent Developments . 22
2.5.1 DIDComm . 22
2.5.2 BBS+ . 24
2.5.3 RevocationList2020 . 25

3 Expert Questionnaire 29
3.1 Preparation . 29
3.2 Questionnaire . 32
3.3 Results . 33

4 Reference Implementation 37
4.1 Provider . 37
4.2 Core Principles . 41
4.3 Routes . 43
4.4 Factory . 45
4.5 Provider Integration . 48

4.5.1 Mattr . 48
4.5.2 Trinsic . 52
4.5.3 Veramo . 55

V

4.5.4 Azure . 60
4.6 Results . 63

5 Evaluation Framework 67
5.1 Requirements . 67
5.2 Framework . 68
5.3 Results . 74

6 Conclusion 77

Bibliography 79

Appendix 91

List of Figures

1.1 Research approach . 3

2.1 Partial identities of alice . 8
2.2 Relationship in centralized identities 9
2.3 Relationships in federated identities 10
2.4 Relationships in user-centric identities 11
2.5 Shift of control with SSI . 12
2.6 DID architecture . 15
2.7 Components of VC data model . 16
2.8 Components of a Verifiable Presentation 18
2.9 Verifiable Credential Lifecycle . 20
2.10 SSI technology stack, standards, and efforts 21
2.11 Workings of Revocation List 2020 . 26

4.1 Veramo Agent . 39
4.2 Azure AD for Verifiable Credentials 40
4.3 Reference architecture . 42
4.4 Modified API definition . 44
4.5 Factory method pattern in reference implementation 45
4.6 System architecture . 48

5.1 Normalized scores for solutions . 74

VII

List of Tables

2.1 Comparison of BBS+ and CL signatures 25

3.1 Initial solution overview . 30
3.2 Expert list . 31
3.3 Generalized criteria structured by category 33
3.4 Adjusted solution overview . 34

4.1 Trinsic roadmap . 53
4.2 Implementation results . 64
4.3 Rough feature comparison . 66

5.1 Evaluation framework . 69
5.2 Scoring of SSI solutions . 72
5.3 Exemplary weights . 74

IX

Listings
2.1 DID document example . 15
2.2 Example of a Bachelors degree as a Verifiable Credential 17
2.3 Plaintext DIDComm message . 23
2.4 Example RevocationList2020 credentials 27
2.5 Example VC referencing a RevocationList2020 credential 27

4.1 Extract of verifier routes . 46
4.2 Extract of service provider factory . 46
4.3 Example of provider implementation 47
4.4 Example of Mattr verification implementation 50
4.5 OIDC issuance QR code generation 50
4.6 Generate QR code for OIDC presentation reqest 51
4.7 Connecting to Trinsic API via SDK 53
4.8 VC issuance with Trinsic . 54
4.9 Trinsic webhook for verification result 55
4.10 Veramo agent creation . 57
4.11 Issue a VC with Veramo . 59
4.12 Create a VC issuance request with Azure 62

XI

List of Abbreviations

CA Certificate Authority
CL Camenisch-Lysyanskaya
CLI Commandline Interface
DID Decentralized Identifier
DIF Decentralized Identity Foundation
DX Developer Experience
IDP Identity Provider
IIW Internet Identity Workshop
OIDC OpenID Connect
RFC Request for Comment
SDK Software Development Kit
SSO Single sign-on
SSI Self-sovereign Identity
VC Verifiable Credential
VP Verifiable Presentation
W3C World Wide Web Consortium
ZKP Zero Knowledge Proof

XIII

1 Introduction

The Internet has become a cornerstone of coexistence in today’s world. With over
4.66 billion Internet users worldwide [Joh21], it determines how we communicate,
think, inform ourselves, and interact with one another. As a result, huge networks of
people are being created in which different cultures are coming closer together and
knowledge is being shared like never before. A central enabler for the functioning of
such a digitized society are digital identities [LHO+20].

Over the course of our lives, we generate a large amount of digital identities from a
wide variety of services, including Facebook, Twitter, WhatsApp, GitHub, LinkedIn,
and many more. They represent us in this digital realm, are part of our personality,
and allow us to identify ourselves online. Because of the way we manage digital
identities in the current era, users mostly own separate identities for each service
or go through centralized, federated identity providers like Google or Facebook.
As a result of these key developments, silos of identity data emerged, which are
problematic concerning efficiency, security, and privacy. This creates a dependency
towards the services that have full control over the identity data. With this, it is
difficult for users to control how the services may exploit this power for their own
interests. In addition, various data leaks and hacks in which sensitive user data
became public, show that the current approaches are not suitable for the problems
of these modern times [Swi21]. [ERMA21, pp. 2-3]

In contrast, the Self-sovereign Identity (SSI) paradigm takes a new approach by
giving users full control of their digital identities through various novel approaches
[FCA19, p. 103059]. This work examines this new approach from a developer’s point
of view to test its practical applicability. In this chapter, the scope, related work
and the research approach will be discussed.

1.1 Scope of Work
For a successful realization of SSI concepts, the existence of good solutions for
developers is critical. This ensures that the barriers to a successful adoption of SSI
are kept to a minimum, simplifying and speeding up the entire process. A good
toolset and developer experience is thus a key enabler for SSI.

With this in mind, an overview of the most important solutions1 in the SSI space is
1synonymous to Software Development Kits (SDKs), libraries, frameworks, and platforms

1

2 1 Introduction

established throughout the thesis. To scope the work accordingly, this work looks at
the solutions in terms of how closely they can map to the lifecycle of a Verifiable
Credential (VC). This decision was made due to VCs being a key artefact in SSI as
they hold the actual verifiable data, e.g. vaccination status or birthdate, of a subject
[SLC19]. The overview is intended to serve as an entry point for developers to get an
overview over of the capabilities of existing solutions and to act as a starting point
for further research.

Furthermore, a use-case agnostic reference implementation is presented that im-
plements four of the presented solutions based on the VC lifecycle. It can serve
developers as a basis for their own work, but above all enables practical validation and
the gathering of experience during the development of the reference implementation.
This way, the knowledge gained flows directly into a new evaluation framework,
which, in addition to other software selection frameworks, can provide concrete
help in selecting the most suitable solution from the developer’s point of view. In
addition, it can reveal shortcomings in current solutions that need to be addressed
for successful adoption of SSI in practical use cases. Hence, the objective of this
work, besides the scientific contributions, is to generate added value for the whole
SSI ecosystem.

1.2 Related Work
At the current time, is no comparable work that addresses the topic in a manner
corresponding to section 1.1. The most similar is [NJ20] who have developed a mobile
wallet based on uPort that covers login, VC issuance as well as verification. Based
on the experience gained, an evaluation of uPort has been made as well. However,
uPort is currently no longer being developed, and the assessment of [NJ20] is also
based on a fraction of the VC lifecycle and basic SSI principles.

Another paper by [Kup20] defines a comprehensive evaluation framework from
an enterprise perspective. Compared to other papers, it covers aspects such as
user experience, technology, and compliance. It is characterized by a wide range
of questions that are used for the evaluation of 43 solutions. However, the list
of solutions is outdated and missing important players (e.g. Mattr and Trinsic).
Furthermore, the assessment does not provide any practical guidance for developers.
A clear analysis of the SSI-relevant features, e.g. the VC lifecycle, does not exist.

Apart from that, papers focus on theoretical foundations or evaluation of existing solu-
tions based on two things: (i) architecture [GMM18] concerning privacy [BCHR+19],
performance [BLZ+20], use case [Kup20], various variations of SSI principles [All16,
AL20, SLS+21, BLZ+20, Cam05, DT20, DP18, FCA19, SNE20, VBHK+19], and (ii)
the interoperability between those systems [Hom20, Joh20]. This clearly shows that
there is a deficit in terms of works that look at existing solutions based on their
practical features and applicability from a developer’s point of view. This thesis
addresses these gaps and thus clearly contributes to the field of research.

1.3 Methodology 3

1.3 Methodology
The process for achieving the objectives from section 1.1 can be divided into four
steps: gain theoretical foundation, create solutions overview, develop reference
implementation, and define the evaluation framework (see figure 1.1).

Figure 1.1: Research approach

For this purpose, various methods of business and information systems engineering
according to [WH07] are applied. Through literature research, an overview of existing
papers and books is created, which serves for building a theoretical foundation, but
also represents the basis for all other steps.

Literature research was conducted using Google Scholar with keywords such as
“Self-sovereign Identity” and the following complex query based on [VBHK+19]:

("Self-sovereign identity" OR "Self sovereign identity ")
OR (

("block-chain" OR "blockchain")
AND ("identity management")
AND ("solution" OR "implementation" OR "review" OR "survey")
AND ("verifiable credentials" OR "decentralized identifiers")

)

Furthermore, the method of cross-sectional studies, mainly in the form of expert
questionnaires, is used. A well-defined set of questions is used to validate the solutions
overview, but also to identify evaluation criteria for the evaluation framework. More
details on the selection of experts and the questions are described in chapter 3. For
the creation of the reference implementation, the methods of reference modelling
and prototyping are used. In combination, they allow the development of a software
prototype that represents a particular problem in a simplified way and whose analysis
can contribute to the discovery of new knowledge. This is especially interesting for
the development of the evaluation framework. Moreover, it should be noted that this
thesis follows the general idea of generating real-world artefacts defined by [Hev07]
as part of design science research.

To conclude, a combination of researches and applied methods defined previously is
reflected in the following research questions:

RQ1: What libraries, platforms, or SDKs are available for implementing Verifiable
Credentials?

RQ2: Which SDKs do field experts recommend using?

4 1 Introduction

RQ3: Which criteria for evaluating Verifiable Credential SDKs can be derived after
developing a reference implementation?

2 Self-sovereign Identity

Health care, social security, education, access to financial services — this is just a
small list of requirements that are essential for a decent life and are usually taken for
granted by people in the Western world. Yet, there are more than 1.1 billion people
worldwide who cannot provide identification and thus cannot access the most basic
services. Digital identities could make a significant contribution towards solving
this problem and giving people the chance to participate in society on a more equal
playing field. [Wor17]

As mentioned in the introduction of chapter 1, current implementations of such
digital identities are insufficient for the problems of our modern times. [SNA21]
divided these problems into four categories:

1. Data Ownership and Governance

2. Password-Based Authentication

3. Fragmented Identity Data

4. Data Breaches and Identity Fraud

The former describes the fact that users have no ownership over their digital identities
and thus cannot exercise any control over them. Service providers take advantage of
this and use collected data to create comprehensive profiles of their users in order to
sell tailored advertising space on corresponding marketplaces. The lack of control
also means that service providers can temporarily or permanently deny users access
to their digital identity at any time. At the beginning of 2021, this led to much
discussion as the account of former U.S. President Donald Trump was permanently
banned from Twitter. One of the central concerns was whether service providers
have too much power over users’ liberties [Noo21]. In addition, given the use of weak
passwords, the heavy reliance on password-based authentication is a security risk
that may lead to identity theft. If users want to protect themselves, they need to use
different and complex passwords for each of their accounts, which quickly becomes a
complicated undertaking without a password manager. A study by the password
manager company LastPass found that a business customer manages an average of
191 passwords [Ste17]. While the use of such tools greatly simplifies the management
of passwords, they can pose a major security risk and do not completely protect
the user [OR20, Orm21, Tot21]. Alternatives such as Single sign-on (SSO), where
users authenticate to other service providers using for example their Google account,
can solve this problem but lead to even greater dependency and centralization. The

5

6 2 Self-sovereign Identity

third issue involves identity data being spread across a large set of service providers,
making it difficult to maintain. As a result, duplicates, errors, and outdated data sets
are common. The lack of open standards also complicates interoperability between
providers, which could theoretically be used to retrieve, move, or delete personal
data. Efforts like the Data Transfer Project founded by Microsoft, Google, Twitter,
and Facebook try to simplify the transfer of data between providers, but after more
than three years show little success [Min20, Hol21, Lom20] and are being criticized
for pushing small competitors even further behind [BC18, p. 15]. [SNA21, pp. 2-3]

One of the biggest problems, however, are data breaches. In June 2021 alone, there
were 235 breaches with 1.16 billion stolen records, with a total of 18.9 billion records
stolen in 1,785 breaches in the first half of 2021 [Ris21]. Looking at the past, there
have been quite a few major hacks [Swi21], including:

• Yahoo (2013): 3 billion accounts

• Marriott (2018): 500 million customer records

• Alibaba (2019): 1.1 billion entries

• LinkedIn (2021): 700 million accounts

A survey of 413 people by [MZSA21] found that 73% of participants had been
affected by at least one, but an average of 5.3 data breaches. In addition, the
majority blamed themselves for the breaches, with only 14% aware that service
providers were responsible.

These are decades-old problems that were already critically discussed by Kim Cameron
in 2005. Cameron, who last worked as Chief Architect of Identity at Microsoft from
1999 to 2019, wrote the following on a blog article [Cam05]:

“The Internet was built without a way to know who and what you are
connecting to. This limits what we can do with it and exposes us to
growing dangers. If we do nothing, we will face rapidly proliferating
episodes of theft and deception that will cumulatively erode public trust
in the Internet.”

Cameron attributes these problems to the lack of an identity layer on the Internet,
which has resulted in many services having to find their own solutions. He calls
this a patchwork of identity one-offs, which fundamentally still exists today and is
difficult to resolve. The reason for this is a lack of consensus and an unwillingness to
give up too much control over identity data. According to him, a solution for this is
an identity metasystem that abstracts away deeper complexities similar to hardware
drivers or TCP/IP and only loosely couples digital identities to the systems. Such
an open identity layer could only be successful if it fulfils the seven laws of identity
defined by Cameron. These include criteria such as user control, consent, pluralism
and minimal disclosure. [Cam05]

Over the years, these ideas, among others like [Mar12, Idc14, All16], gave rise to the

2.1 Identity 7

concept of Self-sovereign Identity. It is intended to eliminate the shortcomings of
today’s established concepts by placing the users in the center and giving them back
complete control over their identity data. A user can decide what, to whom and how
much data is shared without being dependent on a central authority. The emergence
of blockchain technology and various new standards in recent years gave a new boost
to implement SSI in reality. [SUG+21, pp. 6-7; TRWF17, pp. 8-9]

SSI is an entirely new approach to digital identities on the Internet and is seen as a
paradigm shift that deeply affects the infrastructure and power distribution of the
Internet [PR21, p. 3]. For a more profound look at the topic, this chapter takes
a closer look at Self-sovereign Identity. To do so, the concept of identity and the
different types of identities are discussed first. This is followed by a historical look at
the different stages of digital identities, taking a closer look at the previous concepts
of SSI. After the basic foundation, standards that have been established in recent
years and are intended to make SSI feasible in reality are described. Finally, the SSI
architecture with its components and roles are depicted.

2.1 Identity
What defines a human being? One would probably get various answers to this
question, such as its name, gender, place of residence, profession, hobbies, religion,
charitable activities, party affiliation or even a combination of all these characteristics.
[CK01, p. 206] describes in his work that a person’s identity is not just a single,
fixed construct, but consists of several partial identities. Thus, depending on the
context in which a person finds itself, it takes on one of its various partial identities,
which represents it as a human being more or less. For example, a partial identity
for health care consists of its medical history, while the partial identity towards work
contains received certificates. Nevertheless, these different parts of the identity are
not necessarily considered separately, as they can also overlap in certain aspects of
information. It is important to mention that a person decides which information
to share at which time towards which entity. In figure 2.1 the concept of partial
identities is illustrated exemplarily for a person Alice.

An important balancing act is to disclose the right amount of data to maintain
anonymity, but also to provide the other person with the necessary information.
For the purchase of a water, the kiosk vendor should not ask for any personal data,
whereas verification of age when buying alcohol is a valid reason for information
disclosure. In reality, official documents, such as state identification documents,
or sometimes unofficial documents, such as customer cards, are usually used for
such proof of identity. Here, users have full control over their documents as they
are under their control, and only they can decide whom and when to show them.
Official identification documents are also produced and standardized to ensure the
highest possible level of security and interoperability. Other countries can verify
such documents without explicitly contacting authorities, simply by looking at the

8 2 Self-sovereign Identity

document. Confidence in the validity of the data arises from the fact that the
verifying party trusts the authority issuing the document. [SUG+21, p. 6]

Figure 2.1: Partial Identities of Alice (extracted from [CK01])

As a result of the increasing digitization of various branches of life, many processes
are shifting to the digital world. Digital identities, which are similar to analogue
identities in terms of their basic idea, are now being used for interacting with digital
services. They allow entities, such as people or objects, to authenticate themselves
online through certain attributes and thus prove their identity [MG20, p. 103; Bun20].
A more precise definition is given by [Cam05], who defines digital identity as “A set
of assertions that a digital subject makes about itself or another digital subject”. In
this context, a digital subject is “A person or thing represented or existing in the
digital realm which is being described or dealt with.” and the attributes mentioned
can be represented in the form of claims, which are defined as “An assertion of the
truth of something, typically one which is disputed or doubted”. The problem is
that analogue identities and their documents usually have no or not widely accepted
[Kre19, Kop21] digital representations that could be used as a digital identity. From
this emerged the patchwork of identity one-offs described in chapter 2, resulting in
a divergence of digital identities from their original counterparts concerning their
characteristics. To better understand this development, the next section describes
the different stages of digital identities in more detail. [SUG+21, p. 10; ERMA21, p.
2]

2.2 Stages of Digital Identity 9

2.2 Stages of Digital Identity
As indicated in the last section, Allen’s work [All16] has had a major influence on
what is today considered as Self-sovereign Identity and has been cited in over 200
works according to Google Scholar1. According to him, digital identities, or online
identities, have gone through four major stages since the beginning of the Internet.
These are examined in more detail below and show which developments led to the
emergence of SSI.

2.2.1 Centralized Identity
Centralized identities are identities that are issued and verified by a single party
or hierarchy (see figure 2.2). The oldest examples of this are IANA (1988) for the
administration of IP addresses, ICANN (1998) for domain names and Certificate
Authorities (CAs), which play a major role today, particularly in connection with
SSL certificates. Especially with the latter, the hierarchical structure of CAs becomes
obvious when looking at an SSL certificate in the browser. Here, a root authority
allows another organization to manage its own hierarchy, while at all times the root
authority has full control. This is highly critical for numerous reasons. For example,
one entity has complete control over identities and can delete them at any time or
even issue false identities. The latter can happen both willingly and unwillingly as a
result of a hack due to technical or human errors. Due to the centralized nature of
such authorities, they and thus the complete hierarchy (chain of trust) are targets of
attacks, which has been shown in recent years [Bor12]. Just like these organizations,
due to the lack of an identity layer, all services on the internet developed similar
centralized solutions (see introduction in chapter 2). This manifests itself in the
various accounts that an internet user has to manage for various services. Again,
users have little control over their data. [All16]

You
Account

Org

Figure 2.2: Relationship in centralized identities (extracted from [PR21, p. 7])

In addition, the user has to manage the abundance of login credentials efficiently
and securely. However, it is also a challenge for the services, as they have to store a
large amount of sensitive data securely and in compliance with data protection laws.
Nevertheless, the beneficiaries here are the services, as they can act flexibly and
independently of third parties and have full control over the data. [ERMA21, p. 6]

1Using query: “Allen” AND “The Path to Self-Sovereign Identity”

10 2 Self-sovereign Identity

2.2.2 Federated Identity
The second stage of development is represented by the so-called federated identities,
which were intended to break down the hierarchies based on a single authority. Here,
various commercial organizations developed a model in which control was to be
divided between federated authorities. One of the first projects in this area was
Microsoft’s Passport in 1999, where Microsoft created a single, federated identity for
users that could be used on multiple sites (see figure 2.3). However, this unification
came with the price that Microsoft was now at the center of the federation and could
thus exert full control. Other efforts, such as Liberty Alliance Project, founded in
2001, attempted to create an actual federation between multiple companies in which
control was distributed among them. The result, however, was a kind of oligarchy
in which users still had no control over their data. In the end, the sites remained
authorities. [All16]

You
Account

IDP Org

Figure 2.3: Relationships in federated identities (extracted from [PR21, p. 8])

Nevertheless, this type of digital identity is advantageous in that users do not have to
manage an identity/ account for each service and companies have less administrative
effort. The identity provider, e.g., Microsoft, acts as the issuer and owner of the data
and is thus the central point of contact if a user wants to log on to another service of
the federation. The user therefore has no control over its data and is dependent on
the continued existence of the identity provider. Due to the abundance of sensitive
data, it is possible for the Identity Provider (IDP) to aggregate information from
various areas in order to create user profiles, which in itself can lead to various
problems. [ERMA21, pp. 6 - 7]

2.2.3 User-Centric Identity
The goal of user-centric identity is to make federations obsolete and allow the
individual to assert control over their identities across multiple authorities [All16].
The foundations for this, according to [All16], lie in [JHF03], in which a persistent
online identity to be integrated directly into the architecture of the Internet was
proposed, making federations unnecessary. One of their central demands was that
users should have the right to control their own digital identity. This includes the
ability to decide what information is collected as part of their digital identity and
who has access to which parts. Earlier approaches such as Microsoft’s Passport or the

2.2 Stages of Digital Identity 11

Liberty Alliance Project were unable to meet these requirements because, as stated
by [JHF03], they were too business-oriented and thus too focused on the privatization
of information. According to them, everyone’s digital identities should be a public
good that should not be tied to the financial interests of a private company, as their
commercial interest may not overlap with those of society.

These thoughts were guiding and influenced various future organizations and ini-
tiatives. One influential organization in this area has been the Internet Identity
Workshop (IIW), which grew out of efforts by the Identity Commons and the Identity
Gang. The IIW community played a major role in shaping what is understood by
user-centric identity and supported key standards such as OpenID (2005), OpenID
2.0 (2006), OAuth (2010), and OpenID Connect (OIDC) (2014). [All16] summarizes
the focus of these efforts with the terms “user consent” and “interoperability”, which
were non-existent or difficult to implement in previous models. These protocols
have also been able to achieve significant success when considering the abundance
of social logins from for example Facebook, Google, GitHub and Microsoft, which
have taken a central position on various websites [PR21, p. 8]. Nevertheless, the
original approach of user-centric identities could not be realized further. Like in
previous approaches, the identity data and thus absolute control remain with the
SSO providers who register them. Figure 2.4 shows how the user mediates between
IDPs and organizations they want to log in to with their IDP account.

You
Account

IDP Org

Figure 2.4: Relationships in user-centric identities (inspired by [PR21])

[All16] mentions OpenID as an example, which theoretically allows users to set up
their own OpenID providers. However, the complexity is so great that in reality
this option is hardly ever used. Accordingly, the original problems that user-centric
identities were supposed to solve could only be partially solved, since central, mostly
private actors have maintained their authority over identity data. Fundamentally,
user-centric identities are still federated identities that are now merely interoperable,
which is why some literature [ERMA21, PR21] does not list them separately. [All16]

2.2.4 Self-sovereign Identity
[All16] refers to Self-sovereign Identity as the next and most current stage of digital
identities, which is intended to solve the issues of all previous stages. In contrast to

12 2 Self-sovereign Identity

user-centric identities, users are not only at the center of the identity process, but
should also be able to completely own and manage their identities. [PR21, p. 12]
describes this as a “[...] shift in control from the centers of the network [...] to the
edges of the network [...]”, according to which all users interact directly with each
other in a self-sovereign manner as peers. This evolution can be seen in figure 2.5.

Centralized/federated model

Locus of control Locus of control

Issuer Issuer

User

User

Registry

Verifier Verifier
Prove Prove

Prove

Power relationship

Prove

Self-sovereign model

Figure 2.5: Shift of control with SSI (extracted from [PR21, p. 12])

Apparent here is the new element registry, which is used as a (decentralized) public
key infrastructure [PR21, p. 89]. A more detailed explanation of this is given in
section 2.3. To further describe the character of SSI, [All16] defined ten principles,
with which he connects to previous works like the “Laws of Identity” by [Cam05].
These are:

1. Existence: “Users must have an independent existence.”

2. Control: “Users must control their identities.”

3. Access: “Users must have access to their own data.”

4. Transparency: “Systems and algorithms must be transparent.”

5. Persistence: “Identities must be long-lived.”

6. Portability: “Information and services about identity must be transportable.”

7. Interoperability: “Identities should be as widely usable as possible.”

8. Consent: “Users must agree to the use of their identity.”

9. Minimalization: “Disclosure of claims must be minimized.”

10. Protection: “The rights of users must be protected.”

SSI, according to [All16], has its origins in the term “Sovereign Source Authority”,
which originated in [Mar12]. In this work, Marlinspike attributes to every human

2.3 Standards 13

being the right to an identity, which is hindered by tight state structures. In the same
year, work began on the Open Mustard Seed by Patric Deegan, which was intended
to give users control over their digital identity in a decentralized system. This later
resulted in the Windhover Principles (2014), under which the term Self-sovereign
Identity emerged [Idc14, Hub14]. These state, among other things, the following:
[All16]

“Individuals [...] should have control over their digital identities and
personal data ensuring trust in our communications, and the integrity of
the data we share and transact with. [...] Individuals, not social networks,
governments, or corporations, should control their identity credentials
and personal data.”

Over the course of the following years, SSI in connection with blockchain technology
was frequently being discussed in the IIW community, and various ideas were being
developed. This eventually led to some official agencies taking a closer look at
this topic. For example, the U.S. Department of Homeland Security Science &
Technology division published a report in 2015 in which it addressed the previously
discussed topics by the IIW. The EU and countries such as China and Korea
have also recognized the potential. In order to make SSI implementable in reality,
various new standards have been defined over the years in the World Wide Web
Consortium (W3C), among others, which are discussed in more detail in the next
section. [PR21, p. 6]

2.3 Standards
In this section, the two most important standards Decentralized Identifier and
Verifiable Credentials are discussed in more detail, as they are the basis for SSI and
various subsequent standards.

2.3.1 Decentralized Identifier
Throughout history, humans have built up various imaginary networks in which
they have to identify and address themselves or objects. Examples include physical
networks where one identifies oneself with a name, and postal or telephone networks
where identification is enforced through addresses or telephone numbers, respectively.
In the age of the Internet, various others have been introduced, such as IP addresses,
e-mail addresses, domain names or usernames in social networks. Consequently,
there are many identifier systems, which can vary greatly in their nature and place
of application. Zooko Wilcox-O’Hearn published an article on this subject in 2001
[WO01], in which he describes a trilemma in identifier systems. According to this,
an identifier can probably have at most two of the following properties: [PR21, pp.
183-186]

14 2 Self-sovereign Identity

1. Human-readable: Identifiers have semantics in human language and thus have
low entropy.

2. Secure: Identifiers are unique and thus bound to a single entity. Spoofing and
impersonation should not be possible as well.

3. Distributed: The namespace of the identifier is not managed by any central
authority. Identifiers can be generated and resolved independently.

According to this, e-mail addresses, domain names and user names, for example,
are human-readable and secure, but do not fulfil the distributed criterion. However,
this is precisely what is needed for an SSI ecosystem in which users can own and
manage their identity in a self-determined and sovereign manner. With the advent
of blockchain technology, however, first solutions emerged that sought to break this
problem and thus Zooko’s Triangle. This involved the concept of decentralized
domain services (see e.g. Namecoin or ENS), with which human-readable, secure
and distributed identifiers can be generated. However, these are usually tied to the
underlying blockchain and have intrinsic value due to their human-readable nature,
which is why domains/ identifiers are often registered and held in such systems
without actual use [KCE+15], questioning the utility of the system.

To meet the requirements related to identifiers in a SSI system, the W3C proposed
recommendation Decentralized Identifier has been defined. These are globally unique
and location-independent identifiers that can be generated autonomously by entities
without central authorities and provide the ability to prove control over them through
cryptographic evidence. Regarding Zooko’s Triangle, Decentralized Identifiers (DIDs)
don’t attempt to be human-readable and thus satisfy the properties secure and
distributed [PR21, p. 185]. [SLS+21]

The characteristics of a DID can be summarized in the following points [PR21, p.
160]:

1. Persistent: DIDs have no intrinsic expiration date and do not need to change.

2. Resolvable: DIDs are resolvable to retrieve additional metadata.

3. Cryptographically Verifiable: The owner of a DID can cryptographically prove
control over it at any time. This is enabled by a public and private key pair
being assigned to a DID.

4. Decentralized: A DID can be issued/ generated independently of a central
authority.

To better visualize how DIDs work, figure 2.6 provides the DID architecture with all
its components and relations.

At the top is the DID subject, which can be any entity and is represented by the
DID. The DID itself, for example did:example:123456789abcdefghi, is the actual
identifier, which consists of three parts. The first part did describes the identifier
schema, example the DID method, and the third part 123456789abcdefghi a DID

2.3 Standards 15

Figure 2.6: DID architecture (extracted from [SLS+21])

method-specific identifier which can be used to resolve the DID document according
to the DID method. Since DIDs are location-independent, they can be recorded
in different Verifiable Data Registries, for example blockchains, decentralized file
systems, or even centralized web servers. The DID method defines any mechanisms
for creating, resolving, updating and deactivating DIDs and their DID document
that may be recorded on a specific data registry. Examples of DID methods that rely
on blockchains or layers built on top of them as a Verifiable Data Registry include
did:ethr, did:btcr, and did:ion which are in contrast to static DID methods
like did:key which do not require a Verifiable Data Registry and usually wrap the
public key from which the DID document can be derived [PR21, p. 171]. The DID
document contains various metadata about the associated DID and define things
like verification methods, public keys, and possible service endpoints for interactions
with the subject. Additionally, paths can be attached to DIDs to address specific
resources within the DID document. These are the so-called DID URLs. An example
DID document can be found in listing 2.1. [SLS+21]

1 {
2 "@context": [
3 "https://www.w3.org/ns/did/v1",
4 "https://w3id.org/security/suites/ed25519−2020/v1"
5]
6 "id": "did:example:123456789abcdefghi",
7 "authentication": [{
8 "id": "did:example:123456789abcdefghi#keys−1",
9 "type": "Ed25519VerificationKey2020",

10 "controller": "did:example:123456789abcdefghi",
11 "publicKeyMultibase": "

zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
12 }]
13 }

Listing 2.1: DID document example extracted from [SLS+21]

16 2 Self-sovereign Identity

Lastly, figure 2.6 includes the DID controller. This is another entity that is authorized
to make changes to the DID document. In the default case, the DID controller is also
the DID subject, but in some cases these entities can be different (see for example
parent-child relationship). [SLS+21]

In conclusion, the DID specification is a W3C proposed recommendation that enables
decentralized identifiers for SSI ecosystems. The next section presents Verifiable
Credentials, which, in conjunction with DIDs, form the basic building blocks of SSI.

2.3.2 Verifiable Credentials
With DIDs established as unique and authority-independent identifiers, there is still
a need for a data model with which, in combination with DIDs, identity data can be
represented in a standardized way. For this purpose, the W3C defined the Verifiable
Credential (VC) standard. This defines VCs as a set of claims stated by an issuer
in a tamper-evident way, allowing integrity and authorship to be cryptographically
verified. A claim is thereby defined, similarly to subsection 2.1 by Cameron, as
an “[...] assertion made about a subject.” where a subject is a “[...] thing about
which claims are made.”. A VC is written in JSON-LD and consists of three basic
components, which are visualized in figure 2.7. [SLC19]

Figure 2.7: Components of VC data model extracted from [SLC19]

The credential metadata can define various properties of the VC including its issuer,
an expiration date, credential types, or a revocation mechanism that can be used
to check whether the issuer has revoked the credential. Thereafter, a set of claims
can be defined by the issuer, which contains statements about the subject of the
VC. Finally, cryptographic proofs can be attached and used to verify the validity of
the credential’s contents. The standard distinguishes between two types of proofs:
[SLC19]

1. External Proof: The contents of the credential are wrapped, thus converted into
a different, cryptographically verifiable format. A well-known example of this
are JSON web tokens, which are used today in many identity systems for the
transfer of claims between multiple parties, providing a certain compatibility

2.3 Standards 17

to existing systems. Effectively, the set of claims is represented in a digital
signature, the JSON web signature. Since these were developed for the JSON
format, proofs can only refer to an entire credential and not to individual
attribute sets [Hel20a]. [SLC19]

2. Embedded Proof: The proof is contained in the data and is therefore JOSN-LD
native, which makes pre- or post-processing of the data unnecessary [SLC19].
Such so-called Linked Data Proofs use Linked Data Signatures, which can create
proof chains based on the semantic structure of JSON-LD. This enables proofing
on an attribute basis, rather than per credential as in external proofs. This
high amount of flexibility also creates room for other technological possibilities,
such as Zero Knowledge Proof (ZKP). [Hel20a]

In listing 2.2 is an exemplary JSON-LD document, which is leveraging the Verifiable
Credentials Data Model, attesting the credential subject a bachelor’s degree.

1 {
2 "@context":[
3 "https://www.w3.org/2018/credentials/v1",
4 "https://www.w3.org/2018/credentials/examples/v1"
5],
6 "type":[
7 "VerifiableCredential",
8 "UniversityDegreeCredential"
9],

10 "issuer":{
11 "id":"did:key:z6MkhMLpju5tqtbd54BSv7Sq2oRWQo6n..."
12 },
13 "issuanceDate":"2021−05−26T08:33:40.681Z",
14 "credentialSubject":{
15 "id":"did:key:z6MkhMLpju5tqtbd54BSv7Sq2oRWQo6n...",
16 "type":"BachelorDegree",
17 "name":"Bachelor of Science and Arts"
18 },
19 "proof":{
20 "type":"Ed25519Signature2018",
21 "created":"2021−05−26T08:33:40Z",
22 "jws":"eyJhbGciOiJFZERTQSIsImI2NCI6ZmFsc2UsImNyaXQ...",
23 "proofPurpose":"assertionMethod",
24 "verificationMethod":"did:key:

z6MkhMLpju5tqtbd54BSv7Sq2oRWQo6njMEywrbWAGAp3442#z6MkhM..."
25 }
26 }

Listing 2.2: Example of a Bachelors degree as a Verifiable Credential

18 2 Self-sovereign Identity

Listing 2.2 also shows the basic building blocks described earlier. The document
starts with a context definition to reference the semantic vocabulary. This is followed
by a definition of the credential types, the issuer and the issuing time (credentials
metadata). After that follows the actual claim in the object credentialSubject,
where the subject and the corresponding degree are defined. At this point, it also
becomes clear how the DID and VC specifications are intertwined: both issuer and
subject are defined by their DID. The public private key pair belonging to the
issuer’s DID becomes relevant, especially in the next point: the proof. Here, the
issuer uses the private key coupled to its DID to generate the Linked Data signature
and thus makes the credential verifiable.

Another important part of the standard are Verifiable Presentations (VPs). If a
holder of a Verifiable Credential wants to present it to someone, it can combine one
or more VCs in a Verifiable Presentation without invalidating the cryptographic
proofs. This approach has several advantages. On the one hand, the owner of the
credential can specify granularly which credentials it wants to disclose and, at the
same time, a type of proof of ownership can be provided. This becomes particularly
clear if one considers the structure of such a VP in figure 2.8. [SLC19]

Figure 2.8: Components of a Verifiable Presentation extracted from [SLC19]

Once again, metadata is defined at the beginning, which can include attributes like
the context and types. This is followed by the VCs to be presented, which are listed
directly one after the other without any changes. Finally, a cryptographic proof
follows, which the owner of the credentials generates with the private key of its DID.
This protects the integrity of the presentation and at the same time certifies that
the credentials are actually presented by the owner of the DID. The inclusion of the
attributes challenge and domain in the proof can also provide protection against
replay attacks, in which an attacker presents the intercepted presentation again to
another verifier without authorization. [SLC19]

Having introduced Decentralized Identifiers and Verifiable Credentials as the backbone
of an SSI ecosystem, the next section specifies the SSI architecture from a functional
and technological perspective in more detail.

2.4 Architecture 19

2.4 Architecture
In this section, various functional aspects of SSI are described in more detail. For
this purpose, the roles, and interactions in a SSI system are described, followed by
an overview of the technology stack.

2.4.1 Roles
In an SSI ecosystem, there are three basic roles that participants can occupy: issuer,
verifier, and holder. They have already been briefly described in subsection 2.3.2
and are therefore an integral part of the VC standard. The three roles are briefly
presented below: [PR21, pp. 25-26; SLC19]

1. Issuer : An entity that makes statements within a VC about a subject. Such
an entity can be organizations like governments, universities, but also private
individuals or objects such as sensors. An issuer transmits VCs to holders.

2. Holder : An entity that requests or receives VCs from issuers and manages them
in a credential repository/ digital wallet. However, a holder may not always
be the (credential) subject. Examples of these cases include a parent (holder)
holding VCs for its child (subject) or a friend (holder) filling a prescription at the
pharmacy for its sick friend (subject). Holders can also generate Presentations
from Verifiable Credentials and show them to a verifier.

3. Verifier : An entity that wants to verify certain attributes or claims of a subject.
It may receive these in the form of VP, which may contain those claims from one
or more VCs. However, holders have control at all times over which attributes
are passed to the verifier.

The roles and their relations are called the trust triangle, as it describes how trust is
formed in an SSI ecosystem. Like in the real world, trust in the credentials comes
from a verifier trusting the issuer. Figure 2.9 shows this triangle, but also visualizes
how the roles interact with VCs, which is why this process is also called the Verifiable
Credential Lifecycle. [PR21, pp. 25-26; SLC19]

The lifecycle depicts which phases a Verifiable Credential goes through and which
roles perform which actions in these phases. At this point, the process is described
using a Verifiable Credential representing a bachelor’s degree as an example. Here,
the issuer is a university, the holder is an alumnus, and the verifier is a potential
employer. The process is as follows: [SLC19]

1. Issue: The now alumnus has successfully defended its thesis. Its university
then issues a Verifiable Credential to the DID of the alumnus with its own
DID. As holder and subject, the alumnus stores the VC in its digital wallet.

2. Transfer : The alumnus can transfer this VC to another holder, e.g., if he
authorizes a friend to go to a governmental authority for him with the degree.

20 2 Self-sovereign Identity

Figure 2.9: Verifiable Credential Lifecycle (edited and extracted from [SLC19])

3. Present: The alumnus presents the VC of the bachelor’s degree, optionally
inside a VP, to the potential employer as part of his application in order to
have his degree verified.

4. Verify & Check Status: The potential employer checks the authenticity of the
credential. This includes firstly checking that the credential meets the standard,
the proofs are valid and is not revoked. To check the proof, the employer must
resolve the DID documents of the DIDs in the credential to obtain the public
keys. For this, depending on the DID methods used, the employer may need
to query a verifiable data registry (see subsection 2.3.1.

5. Revoke: If the university wants to revoke and thus invalidate a VC for some
reason, it can do so. Depending on the implementation, this is also done with
some kind of decentralized or central registry. One of them is described later
on in subsection 2.5.3.

6. Delete: A holder can delete a VC from its digital wallet at any time, which
does not affect its overall validity.

This process can be applied to any other use case and creates a system through
defined standards, technologies and the described trust model, which in its basic
characteristics also takes place in real interactions and where trust can form between
entities.

2.4 Architecture 21

2.4.2 Technology Stack
Looking at the SSI technology stack, figure 2.10 provides an overview that divides
it into five layers and three organizations. Those organizations being the W3C,
DIF, and Hyperledger are the main drivers behind multiple community efforts and
standards. Figure 2.10 is based on previous work from the Decentralized Identity
Foundation (DIF) and the Trust over IP organization [Hec20, Yil21, DGH+21].

C
re

d
e
n

ti
a
l

A
g

e
n

t
P

u
b

li
c
 T

ru
s
t

* Unof�cial draft by W3C Credentials Community Group

World Wide Web Consortium Decentralized Identity Foundation Hyperledger Projects

Revocation

Disclosure

Format

Exchange

Proof LD-Proof* JWT Proof

Anoncreds v1/ v2Revocation List 2020*

Anoncreds v1/ v2

Anoncreds v1/ v2 ZKP

Aries Present ProofWACI, Present Exchange,

Credential Manifest
Veri�able Presentation Request*

BBS+ Signatures*

Envelope

Transport

Key Operations

Storage

DIDComm v2 DIDComm v1

CHAPI*

Horcrux Protocol

Encrypted Data Vaults*,

Universal Wallet 2020*

Universal Wallet 2020* DKMS

Identi�er

Identity Hub

Scaling Sidetree

Resolution DID Resolution

KERI

C
o

m
m

u
n

ic
a
ti

o
n

Method

A
p

p
li
c
a
ti

o
n

Data Model

Business Logic

App Speci�cs

did:ion, ...did:key, did:web, ...

Decentralized Identifiers

Verifiable Credential Data Model

Figure 2.10: SSI technology stack, standards, and efforts (based on [Hec20, Yil21,
DGH+21])

A notable change is that here the communication layer has been broken out of the
agent layer. Even though it is mostly used by agents, it’s not part of the agents itself,
but rather a separate set of communication technologies any entity can leverage.

The public trust layer is the baseline layer and thus forms the basis for all other
layers above it. The aim here is to create a public trust registry that includes, for
example, DIDs and their DID methods and thus serves as a (decentralized) public

22 2 Self-sovereign Identity

key infrastructure. As already mentioned, this may or may not imply the need for
technologies like blockchains or decentralized file systems. A centralized alternative is
for example did:web, where all method-specific actions and the DID document depend
on a centralized web server. In the subsequent agent layer, which fundamentally
allows an entity to “[...] take actions, perform communications, store information,
and track usage of the digital wallet.” [PR21, p. 192] and hence handles tasks related
to storing VCs and DIDs and performing key operations. This includes for example
the generation of proofs, but also the deactivation or generation of new key pairs. On
top of this, is the communication layer, which handles the communication between
agents. This includes transport, envelope, and credential exchange standards and
protocols. On the fourth level is the credential layer, which includes all standards
and technology used in the credentials’ data model, such as formats, types of proofs,
disclosure, and revocation. The top level is the application layer, which creates user
applications based on the underlying layers that cover and implement specific use
cases. This includes concrete data models for the credentials, but also business and
application-specific logic and technology. [Hec20, Yil21, DGH+21, PR21]

In addition to the general structure and elements of the layers, figure 2.10 contains
concrete standards and community efforts which provide the layers with a technolog-
ical basis. A differentiation is made here between the concrete efforts of the three
most important organizations in this area. It should be noted at this point that this
overview does not claim to be complete and is merely illustrative.

2.5 Recent Developments
As mentioned in the last subsection and in figure 2.10, there are various community
efforts that try to fill the gaps in the SSI stack. Therefore, three of the most important
efforts are examined in more detail in the following subsections. The selection was
made by observations of the reference implementation and the last Internet Identity
Workshop in April 2021.

2.5.1 DIDComm
DIDComm, or DID communication, is a standard for secure, asynchronous, peer-to-
peer communication between agents based on the DID standard. It is managed by
the DID-Comm Working Group of the Decentralized Identity Foundation [Har21]
and originated from efforts of the Hyperledger project [Har19]. Messages are agnostic
of the transport medium, so existing protocols such as HTTP, Bluetooth, NFC, or
even QR codes can be used. Moreover, the standard focuses on machine-readable
messages, which enables a broader mass of use cases where all kinds of entities can
exchange any kind of encrypted messages. [PR21, pp. 96-97]

If an entity A wants to send a message to entity B, it prepares a JSON message
and retrieves the DID document of B’s DID. Out of this, it needs two pieces of

2.5 Recent Developments 23

information: A messaging endpoint and the public key. With the latter, A can
encrypt the message so that only B can decrypt it. In addition, A attaches a signature
that it created with its own private key. This allows B to verify the integrity and
origin of the message. Depending on the messaging endpoint and the transport
route, the message is either delivered directly or scheduled for several hops via
intermediaries. The standard provides various routing-specific information for this.
If B now receives the message, it can decrypt it with its private key and verify the
signature with As public key. If everything is correct, B can reply in the analogous
way to As’s procedure. The specification describes its goals in eight points: [Har21]

1. Secure: Temper-proof using cryptography.

2. Private: Intermediaries don’t know who is when communicating about what.
Senders can be anonymous.

3. Decentralized: Trust is based on keys derived from control of DIDs

4. Transport-agnostic: Usable with any transport protocol. No matter if simplex,
duplex, synchronous, asynchronous, online, or offline.

5. Routable: Messages can be routed like email through any kind of infrastructure.

6. Interoperable: Independent of hardware or software.

7. Extensible: Easily extensible by developers.

8. Efficient: Low resource requirements.

To better understand the structure of a DIDComm message, listing 2.3 shows a
plaintext version.

1 {
2 "typ": "application/didcomm−plain+json",
3 "id": "1234567890",
4 "type": "<message−type−uri>",
5 "from": "did:example:alice",
6 "to": ["did:example:bob"],
7 "created_time": 1516269022,
8 "expires_time": 1516385931,
9 "body": {

10 "messagespecificattribute": "and its value"
11 }
12 }

Listing 2.3: Plaintext DIDComm message (extracted from [Har21])

Subsequently, typ describes the media type of the message, i.e. whether it is
unencrypted, encrypted, and or signed. This is relevant for the corresponding
library how to handle the content. DIDComm relies here on some JSON Web

24 2 Self-sovereign Identity

Algorithms from the JOSE (JavaScript Object Signing and Encryption) family, which
standardizes these cryptographic operations. id is the message ID and identifies the
message exactly. Next, type describes what kind of message is in plaintext so that
it can be handled correctly at the application level later. The next two attributes
from and to define the DID of the sender and the DIDs of the recipients, followed by
timestamps defining the creation and expiration time of the message. All attributes
up to this point are the so-called message header, which is followed by the body
containing the actual message. [Har21]

The specification is much more detailed in many points, but this will not be considered
further with regard to the scope of this work. DIDComm as a secure communication
method over DIDs is considered one of the most promising specifications in this area
[PR21, p. 97] and can significantly contribute to how entities can exchange simple
messages or even VCs peer-to-peer. Nevertheless, DIDComm is still relatively new,
so its toolset and adoption is still relatively small.

2.5.2 BBS+
With regard to subsection 2.2.4, Allen describes in his ten principles for SSI, among
other things, the principle of “minimization”, according to which the number of
released claims should be kept as low as possible. This is also known as selective
disclosures, according to which a user can keep certain attributes of a credential
secret, which corresponds to the blackening of documents in the analogue world. The
next step to this approach are so-called ZKP, where the actual attribute is not shared,
but an assertion of a value that confirms what the verifier wants to know (predicates).
For example, if an age check takes place, the verifier does not actually need to
know the exact age, but only the fact whether the person is over 18 or not. There
are two basic approaches to this in the community: Camenisch-Lysyanskaya (CL)
signatures and BBS+ signatures. Camenisch-Lysyanskaya signatures were one
of the first implementations in the form of Anoncreds v1, but were dependent
on published schemes for each credential on a ledger and therefore not standard-
compliant. Furthermore, they were accompanied by large keys and large credentials
that were costly to generate [Zun21]. [You21, pp. 17-18]

In the fall of 2020, Mattr announced BBS+ LD proofs that promised the same
benefits while maintaining compatibility with the VC specification and reducing
credentials and signature size. In addition, signatures were significantly faster to
generate and the dependency on a ledger was not needed any more. [Zun21]

Technically, BBS+ LD proofs rely on a combination of Linked Data proofs, the JSON-
LD credential schema and BBS+ signatures. This combination allows generating
proofs for presentations that can contain only a subset of attributes of the original VCs
without affecting the semantic expressiveness and cryptographic integrity. Attribute
filtering is performed using JSON-LD framing, while BBS+ is used to generate a so-
called multi-message signature. As the name suggests, instead of one signature of one

2.5 Recent Developments 25

message, here a signature is composed of an array of messages. This ultimately allows
the resulting signature to be derived by the holder so that it can only represent a part
of the attributes. Unlike Camenisch-Lysyanskaya signatures, current implementations
of BBS+ do not yet allow the use of predicates to enable comprehensive ZKP.
Cryptographically, however, such support is possible, but has not been the focus
of efforts to date. Alternatively, the values of such predicates can be incorporated
directly by the issuer as a separate attribute in the VC, which can then be disclosed
by the holder through selective disclosures. Table 2.1 contains a comparison of BBS+
and CL signatures concerning size and performance.

Table 2.1: Comparison of BBS+ and CL signatures (based on MAT20b, Hel20b)
Domain Criterion BBS+ Signatures1 CL Signatures
Size Private Key 32 Bytes 256 Bytes

Public Key 96 Bytes 771 + 257
msg

Bytes
Signature 112 Bytes 672 Bytes
Proof 368 + 32

hidden_msg
Bytes 696 + 74

msg
Bytes

Performance Key Generation 1 ms 8.8 sec
Signing2 2.58 ms 93 ms
Verifying2 5.23 ms 11 ms
Proof Generation2 10.6 ms 13 ms

1 BLS12-381 elliptic curve
2 For 10 messages

The associated specification “BBS+ Signatures 2020” [LS21b] is currently an unofficial
draft, which is managed by the W3C Credentials Community Group. [You21, pp.
18-20]

2.5.3 RevocationList2020
An elementary part of the VC lifecycle is the revocation step (see subsection 2.4.1).
It allows issuers of VCs to revoke them at any time due to various reasons. Such
reasons may be, for example, the expiration of a credential whose expiration date was
not known at the time of issuance (e.g., office building access card), or incorrectly
issued credentials (e.g., fraud).

The VC standard describes this process step and some important requirements, but
does not define a standard for it. It only provides that there could be so-called
“revocation registries” which could be part of the verifiable data registry and some
privacy considerations concerning data leakage and correlation [SLC19]. Since such
a registry can be located at any storage location, as already described in subsection
2.3.1 and 2.3.2, the writer thinks that a distinction could be made at this point
between on-chain (on a blockchain) and off-chain (off a blockchain) storage solutions
for revocation. An example of the former is Anoncreds v1, which implements such a

26 2 Self-sovereign Identity

registry on-chain that can be used to retrieve values used for the revocation process
[Har18, Hyp18]. In contrast to this are off-chain solutions such as the Revocation
List 2020 specification (see figure 2.11), which is managed by the W3C Credentials
Community Group and currently an unofficial draft [LS21a].

Figure 2.11: Workings of Revocation List 2020 (extracted from [LS21a])

It is a revocation mechanism based on a compressed bitstring that is compatible with
existing architectures on the Internet. The issuer of VCs maintains and publishes its
own revocation list (bitstring) for its credentials, which contains their status. Each
credential is assigned a position in the list whose bit value describes its status (1 =
revoked, 0 = not revoked). The specification advises a default bit string size of 16
KB, which can then hold the status of 131,072 credentials. However, since in most
cases the majority of credentials has not been revoked and therefore have the value
0, the size can be reduced to a few hundred bytes using compression methods such
as ZLIB. If a verifier now wants to retrieve the status of a credential, it retrieves the
revocation list from the issuer, which contains the status of over 100,000 credentials.
It can decompress this and check the position from the credential in the bit string to
check the revocation status. The advantages of this approach can be summarized as
follows: [LS21a]

• Efficient: The compression of the bit string uses little storage space and
bandwidth, making it accessible for a wide range of devices and infrastructures
with varying capabilities.

• Privacy: The status of a credential can be hidden among several others. This
makes correlation difficult for issuers, since an entire list is retrieved at any
time, instead of the state of a single credential. If higher privacy is needed,
the length of the bit string can be increased accordingly. Furthermore, only
a minimum of information is published, so no data is published outside an
anonymous status.

• Compatibility: The list can be hosted by an issuer directly or distributed
through a content distribution network, which further increases privacy since
the issuer no longer handles requests directly. This makes it easy to distribute
and request the revocation list with existing libraries and infrastructures.

For its implementation, the issuer published the compressed bitstring in a Verifiable
Credential signed by itself. The data model can be seen exemplary in listing 2.4.

2.5 Recent Developments 27

1 {
2 "@context": [...],
3 "id": "https://example.com/credentials/status/3",
4 "type": ["VerifiableCredential", "

RevocationList2020Credential"],
5 "issuer": "did:example:12345",
6 "credentialSubject": {
7 "id": "https://dmv.example.gov/credentials/status/3#94567",
8 "type": "RevocationList2020",
9 "encodedList": "H4sIAAAAAAAAA−3

BMQEAAADCoPVPbQsvoAAAAAAAAAAAAAAA..."
10 },
11 "proof": { ... }
12 }

Listing 2.4: Example RevocationList2020 credentials (edited and extracted from [LS21a])

The specification requires that this credential must contain an id that references
the id within the credential whose status is being represented. In addition, the type
RevocationList2020Credential must be included, as well as the type and encoded
list under credentialSubject. Correspondingly, the specification also describes
how the published revocation list can be correctly referenced as a revocation method
in an VC issued by the issuer. This is illustrated in listing 2.5.

1 {
2 "@context": [...],
3 "id": "https://example.com/credentials/23894672394",
4 "type": ["VerifiableCredential"],
5 "issuer": "did:example:12345",
6 "credentialStatus": {
7 "id": "https://dmv.example.gov/credentials/status/3#94567"
8 "type": "RevocationList2020Status",
9 "revocationListIndex": "94567",

10 "revocationListCredential": "https://example.com/credentia
11 },
12 "credentialSubject": {
13 "id": "did:example:6789",
14 "type": "Person"
15 },
16 "proof": { ... }
17 }

Listing 2.5: Example VC referencing a RevocationList2020 credential (edited and
extracted from [LS21a])

28 2 Self-sovereign Identity

In listing 2.5, the object credentialStatus is the primary object to be consid-
ered. In this, the id is found in the first place, which corresponds to the id
in the credentialSubject of the RevocationList2020 credential. The type at-
tribute clearly indicates that this credential uses the RevocationList2020 revocation
method, followed by the index of the revocation status of the credential in the
list (revocationListIndex) and a URL leading directly to the VC containing the
encoded revocation list (revocationListCredential). [LS21a]

RevocationList2020 is a promising approach to implement privacy-preserving revoca-
tion of VCs. Despite the status of the specification, there are already possibilities to
use this revocation method in production. For example, Mattr offers it to its cus-
tomers on its SSI platform [MAT20a], but it can also be implemented independently
using open-source libraries such as vc-revocation-list-2020 [Dig21] from Digital
Bazaar.

3 Expert Questionnaire

After the theoretical foundations have been laid out in the last chapter, this chapter
prepares the subsequent work on the reference implementation and the evaluation
framework. For this purpose, a questionnaire of experts in the SSI space is prepared,
conducted, and evaluated in the following sections. This procedure provides the
technical and factual basis for further chapters. Starting with the next section, the
preparation of the questionnaire is presented.

3.1 Preparation
The questionnaire of experts in the field is intended to ensure that the work and its
artefacts are based on practical experience and opinions. On the one hand, the goal
is to confirm the importance of the Developer Experience (DX), but also to generate
a validated list of SSI solutions. In addition, it is to be determined which of the
solutions are recommendable or not, which criteria are relevant for the selection and
which aspects are currently possibly still underrepresented in the solutions.

Starting with the list, a literature [BLZ+20, BCHR+19, DT20, DP18, FCA19, Kup20,
VBHK+19, SNE20, GMM18], and a search on GitHub1 was first conducted to create
an initial overview of existing solutions. This proved to be a complicated undertaking,
as the literature often discusses old (uPort) or SDK-less solutions (ShoCard) and
sometimes even mixes in SSI networks. For example, Sovrin as a Hyperledger network
was often found in the same table as uPort [BLZ+20, BCHR+19, DT20, DP18]. This
could be confusing for the respective developers who want to integrate SSI into their
products. Therefore, solutions were first filtered out that are open for developers to
work with. Afterwards, it was checked which steps of the VC lifecycle [SLC19] the
individual solutions can cover. This is relevant for checking the extent to which the
solutions could meet implementation requirements. For this purpose, the websites,
and documentations of the individual solutions were reviewed, which unfortunately
often contain insufficient information.

To extend the table even further, some talks at the IIW in April 2021 [IIW21]
were followed, from which Mattr, Trinsic, and Veramo could be added. These were
either presented by their developers or were part of those very talks and discussions.
Furthermore, the creators of these solutions are perceived as experts in the field who
contribute to various standards and open-source implementations in the SSI space.

1Keywords: Verifiable Credentials, Self Sovereign Identity

29

30 3 Expert Questionnaire

This makes these solutions potentially close to current developments and therefore
interesting. Nevertheless, there is still little mentioning of them in the analysed
literature. These observations resulted in table 3.1, which shows the name of the
found solutions, the type, and the coverage of the VC lifecycles. It is important
to mention that the contents of this table are partly based on vague information
and should therefore be treated with caution. Therefore, a validation by experts
and a practical test of the most important solutions in the context of a reference
implementation is essential to generate reliable data.

Table 3.1: Initial solution overview

Name Type Iss
ue

St
or
e
Tr
an
sfe
r

Co
mp

os
e

Pr
ese
nt

Ve
rif
y
Re
vo
ke

De
let
e

Mattr Platform l l l l l l l

vc-js (Digital Bazaar) Library l l l

Azure AD for VCs Platform l l l l l l l

Verity (Evernym) SDK l l l l l l l

Veramo Framework l l l

Identity.com Library l l l l

Jolocom Library, SDK l l l l

Trinsic Platform l l l l l l l

Dock.io SDK l l l l

vc.js (Transmute) Library l l l

TangleID Library l l

Affinidi Platform l l l l l l l

DIDKit Library l l l

In addition, this table has a rather illustrative value, not a comprehensive one,
since this work is not meant to cover all existing solutions on the market but merely
provides a rough overview of notable and important projects. Looking at the lifecycle,
it becomes clear that the solutions differ greatly in their range of functionality, which
is particularly noticeable with regard to their types. Thus, libraries usually focus on
individual areas, while platforms, frameworks, and SDKs often cover larger areas. In
addition, the store step only refers to the presence of a wallet, which is why solutions
such as Veramo did not receive a check here despite the presence of agent-internal
storage.

With that initial overview, the selection of experts is addressed at this point. For this,
the participation in the IIW in April 2021 was very helpful, as a large part of the
SSI community attended. During the three-day-long event, technical talk [HSS21]
and their subsequent discussions were followed in order to identify technical experts.

3.1 Preparation 31

From this and research on LinkedIn, table 3.2 was created, which summarizes the
names, companies, and positions of the individual experts.

Table 3.2: Expert list

Name Company Position

Adolf, Stefan Turbine Kreuzberg Developer Ambassador
Buchner, Daniel Microsoft Senior PM - Decentralized Identity
Curran, Stephen Cloudcompass Technical Architect
Den Hartog, Kyle Mattr Senior Standards Engineer
Du Seuil, Daniël European

Blockchain Partnership
Convenor European
Self Sovereign Identity Framework

Hensley, Jace Bloom Platform Engineering Manager
Hughes, Riley Trinsic CEO
Looker, Tobias Mattr Technical Standards Architect
Moeller, David Affinidi Technical Lead
Riedel, Martin ConsenSys Mesh Research Engineer - Identity
Reed, Drummond Evernym CTO
Patel, Preet Mattr Developer Advocate
Sabadello, Markus Danube Tech CEO
Sedlmeir, JohannesUniversity of Bayreuth Research Assistant
Steele, Orie Transmute CTO

Regarding the definition of the questions, they follow the basic subjects defined
at the beginning of the section. In addition, a limited number of questions were
chosen to make the answering process as convenient as possible. This resulted in the
following questions:

1. What is your job title? (Developer, Researcher, ...)

2. Are you currently working on anything SSI-related?

3. What fascinates you about SSI?

4. What value would you attribute to the experience of a developer concerning
its available toolset for the successful implementation of SSI products?

5. Looking at the spreadsheet, what additions or changes would you make?

6. If you were a developer at a company looking to integrate Verifiable Credentials
into their products, which three solutions would you look at and why?

7. Which ones wouldn’t you use and why?

8. What do you consider essential criteria for selecting a good SSI solution for
implementing Verifiable Credentials?

32 3 Expert Questionnaire

9. What do you think are common problems existing SSI solutions for developers
have?

10. Is there something you still want to say?

After the preparations were completed, the solution overview in table 3.1, as well as
the defined questions, were transmitted to the experts in the list. The execution and
answers of the questionnaire are discussed in the next section.

3.2 Questionnaire
The questionnaire was designed from the beginning so that it could be carried out by
text and thus independently of busy schedules. In terms of the experts’ positions, this
was a key aspect to ensure a high response rate. Open questions were used to invite
the participants to give free and broad answers without being too restrictive. E-mail
and LinkedIn were used as the communication mediums, where the published W3C
mailing lists proved to be one of the most relying places to get the email addresses.

Of the 14 contacts made, nine responses were received, seven of which answered the
questions over time. Among them were Orie Steele, Martin Riedel, Riley Hughes,
Markus Sabadello, Stefan Adolf, Kamal Laungani (redirected by David Moeller) and
Johannes Sedlmeir. Unfortunately, despite contact, no replies could be received from
Preet Patel and Richard Esplin (redirected by Drummond Reed) during the last few
months. The answers of the individual participants can be found in the appendix 6,
whereby a brief summary is presented at this point:

1. What is your job title? (Developer, Researcher, ...): CEO, CTO, leads, devel-
oper ambassador, engineers

2. Are you currently working on anything SSI-related?: Adoption, specifications,
frameworks, platforms, libraries, government projects

3. What fascinates you about SSI?: Control (freedom, sovereignty, ownership, ...),
technology (cryptography, interoperability, decentralization), enabler (eGov),
security, and privacy

4. What value would you attribute to the experience of a developer concerning its
available toolset for the successful implementation of SSI products? Things like
good documentation, guides, well-tested frameworks, fundamental libraries,
finished standards, and support are critical.

5. Looking at the spreadsheet, what additions or changes would you make?: Mea-
sure of interoperability, Trinsic SDK, importance of ZKP technologies, aca-py
solution, universal issuer/ verifier, Veramo fixes, discussions about weighing of
lifecycle steps, verifiable-credentials-java solution, MATTR’s and Trinsic’s role

6. If you were a developer at a company looking to integrate Verifiable Credentials
into their products, which three solutions would you look at and why?: Mattr

3.3 Results 33

(3; ZKP, standard compliant, research focus), Trinsic (3), Veramo (2), DIDKit
(2), Hyperledger stack (2; ZKP, wallet ecosystem), Affinidi (1; support, active),
vc-js (1), vc.js (1), verifiable-credentials-java (1), Azure AD (1), Identity.com
(1), Jolocom (1)

7. Which ones wouldn’t you use and why?: Hyperledger solutions (2; over-
complicated, limited), Trinsic (1; Hyperledger base), Azure AD (1; corporate
lock-in), Identity.com (1; corporate lock-in), Jolocom (1; utility-only)

8. What do you consider essential criteria for selecting a good SSI solution for im-
plementing Verifiable Credentials?: VC lifecycle coverage, support, open-source,
standards contribution, usage of standards, interoperability, implementation
time, mobile wallet, key formats, JSON-LD, community-driven governance
model, developer experience, language support

9. What do you think are common problems existing SSI solutions for developers
have?: Young industry, focus on not well-supported cryptography, missing
cryptography audits, balance between abstracting away or exposing complex-
ity, incompatible solutions, solutions build around closed ecosystems, rapidly
changing specifications

10. Is there something you still want to say?: Positive feedback for this research

Although not all the contacted experts responded, they nevertheless provided valuable
insights. For this purpose, the next section concludes by putting these into the
context of the subsequent work, pointing out changes to the solutions overview, and
making a selection for the next chapter.

3.3 Results
In the last section, the conduction of the expert questionnaire was discussed. Among
other things, this resulted in initial evaluation criteria, which are divided into four
categories at this point. These categories include various criteria derived from the
experts’ statements and were generalized to cover multiple addressed domains by
the experts. The result of these considerations can be seen in 3.3.

Table 3.3: Generalized criteria structured by category

Category Criteria

FunctionalityVC lifecycle coverage, key format, credential types, mobile wallet
Flexibility Language support
Operability Support, interoperability, effort, standards use
Involvement Contribution, project governance

The four broad categories functionality, flexibility, operability, and involvement were

34 3 Expert Questionnaire

defined. They are used in chapter 5 for the creation of the evaluation framework and
contain a bigger subset of criteria within them. From the above table, it is clear that
features, interoperability, implementation, and work on standards are given high
priority. This makes sense with regard to the rapidly changing field and the desire to
make the technologies usable in real applications. Regarding the solution overview,
the experts were able to contribute several things. All the addressed modifications
can be found in table 3.4.

Table 3.4: Adjusted solution overview

Name Type Iss
ue
St
or
e
Tr
an
sfe
r

Co
mp

os
e

Pr
ese
nt

Ve
rif
y
Re
vo
ke

De
let
e

De
riv
e

Mattr Platform l l l l l l l l

vc-js (Digital Bazaar) Library l l l

Azure AD for VCs Platform l l l l l l l

Verity (Evernym) Platform, SDK l l l l l l l

Veramo Framework l l l l l

Identity.com Library l l l l

Jolocom Library, SDK l l l l

Trinsic Platform, SDK l l l l l l l l

Dock.io SDK l l l l

vc.js (Transmute) Library l l l

TangleID Library l l

Affinidi Platform l l l l l l l

DIDKit Library l l l

aca-py SDK l l l l l l l l

verifiable-credentials-java Library l l l

The solutions aca-py and verifiable-credentials-java were added to the initial solution
overview. In addition, the lifecycle was extended by the derive step, which represents
the ZKP functionalities. While this step is not directly part of the VC lifecycle, it is
frequently mentioned and described in the VC standard. Moreover, with respect to
Allen’s “Laws of Identity” in subsection 2.2.4, this is a central aspect of SSI. The
existence of the data store in Veramo was reflected, and the revocation step negated
in Evernym. There are contradictory statements about the latter, as described in the
last subsection. In the developer portal [Eve21a] revocation is mentioned, but in the
Swagger documentation of the API no reference to revocation can be found [Eve21b].
A contact person at Evernym was able to confirm that VC revocation is indeed
not supported at the time of writing. Additions like an interoperability criterion
were not integrated, as they are not necessarily important for a rough overview but

3.3 Results 35

is considered in the evaluation framework. Furthermore, the universal issuer and
verifier were not added as solutions because they merely are websites to experiment
with VCs and not comparable to the listed solution.

With regard to the next chapter, the four solutions Mattr, Trinsic, Veramo, and Azure
AD for Verifiable Credentials were selected. The first three solutions received the most
recommendations in the expert questionnaire and stood out, especially at the IIW in
April 2021. Veramo is also interesting in comparison to the other solutions because
it is considered the successor to uPort [uPo21a], which was frequently mentioned in
the literature [BCHR+19, BLZ+20, DT20, DP18, FCA19, Kup20]. Azure AD was
selected because it is the only solution made by a traditional ID software provider
that implements SSI.

This chapter provided an overview of existing developer-oriented SSI solutions, and
a selection for the reference implementation in the next chapter was made. The
latter can also practically validate the functionality of the four solutions. In addition,
initial considerations for the evaluation framework were established.

4 Reference Implementation

This chapter focuses on the development of a reference implementation covering
the VC lifecycle, which is based on learnings from the last few chapters concerning
theoretical background and expert opinions. It is intended to directly address the
lack of practical evaluations of SSI solutions in this research area, by leveraging four
of the previously listed solutions that can be used to implement the VC lifecycle. In
the next sections, the selected solutions will be presented, followed by a description
of core principles and components which form the basis for the development of the
reference implementation and its components.

4.1 Provider
This section briefly introduces the solutions selected in section 3.3: Mattr, Trinsic,
Veramo and Azure. From now on, they will be referred to as providers, since they
provide the technical basis for the actual implementation.

Mattr
The first provider is developed by Mattr Limited, which is a New Zealand-based
company [MAT21h] that specializes in providing solutions for “[...] a new world of
digital trust.” [MAT21d]. This primarily includes their Mattr VII cloud platform,
which can be used to technically implement key components of an SSI ecosystem
[MAT21i]. According to the company, the platform can be divided into the following
components: [MAT21g]

• VII Core: Core includes a variety of REST APIs that serve as the foundation for
all interactions. This includes APIs for DIDs, VCs, VPs, and secure messaging
between agents using DIDs. [MAT21m]

• VII Extensions: These are additional components that build on VII Core, such
as a bridge for OpenID Connect systems (see user-centric identities), or white
label mobile wallets and SDKs. [MAT21p]

• VII Drivers: Similar to PC drivers, this component allows flexible integration
of basic elements. This includes support for various DID methods (did:key,
did:web, did:ion), crypto suites (ed25519, bls12381g2)[MAT21n], and storage
options. [MAT21o]

In addition, the company offers resources for developers to learn the basics of SSI
[MAT21j] but also a comprehensive API documentation, tutorials in written and

37

38 4 Reference Implementation

video form [MAT21c], mobile wallets, and sample apps [MAT21e, MAT21m]. The
available free tier allows testing the platform, while production systems can be
transferred to a usage-based system, where billing is done per transaction [MAT21f].
In addition to a variety of DID methods, Mattr offers the latest technologies with
regard to OIDC, styled (complex) credentials, LD proofs, RevocationList2020, BBS+,
and DIDComm v2. Within the SSI community, they participate in the development
of open standards [MAT21a, LS21b] and software libraries [MAT21b] and have
demonstrated interoperability in the 2021 Homeland Security Plugfest [Hom21].

Trinsic
The second used cloud platform provider is developed by the US company Trinsic
Technologies Inc. and offers various components for developing SSI solutions [Tri21f].
The company divides the platform into four components:

• Trinsic Core: Core offers REST APIs to issue, verify and exchange credentials.
[Tri21g]

• Trinsic Ecosystems: Enables the creation of ecosystems based on organizations.
It can be defined which credentials can be exchanged, who can participate in
the ecosystem, and how participants know whom to trust. [Tri21h]

• Trinsic Studio: A dashboard that offers a user-friendly GUI on top of the
Core APIs to manage organizations, connections, credentials, and verification
templates. Trinsic also offers a white-label version of Trinsic Studio. [Tri21i]

• Identity Wallets: The wallet SDK allows the creation of cross-platform wallet
apps for, for example, Flutter and React Native. Otherwise, Trinsic’s own
wallet app for Android and iOS can be downloaded from the app stores for
testing purposes. Cloud wallets are also supported. [Tri21a]

In addition, Trinsic offers SDKs in various languages that serve as wrappers for the
REST API, providing native interfaces [Tri21e]. This includes languages such as
Ruby, Python, JavaScript and more, with the ability to generate SDKs for additional
languages through Trinsic’s swagger hub. Worth mentioning is also the well-structured
and comprehensive documentation, which also integrates code samples and a getting
started tutorial [Tri21b]. The documentation also describes the basics of SSI in
a short and concise way, so that even new developers can get an introduction to
the topic. The registration process is very short and in combination with the free
tier, which allows 50 credentials exchanges per month and has a reduced feature
set [Tri21d], it is possible to get started quickly. For production systems, Trinsic
charges fixed monthly amounts starting at $18 for 100 credential exchanges. The
company is also partnered with Zapier, which allows custom flows to be created with
other apps, e.g., to send a credential via Gmail when there is a new attendee at
Eventbrite. Trinsic follows standards like DID, VC, DIDComm and various Aries
Requests for Comment (RFCs), for which open-source work has been done on a .NET
implementation [Tri21c]. Its interoperability has not been proven with Homelands
Security Plugfest [Hom21].

4.1 Provider 39

Veramo
Unlike the previous two providers, Veramo is a JavaScript framework which can be
used for verifiable data in the SSI context [Ver21c]. It is the direct successor to the
uPort project [uPo21a], which was started by ConsenSys in 2015 and discontinued in
2021 due to a changing SSI ecosystem and foundational issues. The work on Veramo
started in 2020 under the name “DID Agent Framework”. It was intended to learn
from the uPort experiences by creating a modular architecture whose functionalities
could be extended by plugins and used both on the web, mobile, and backend.
[uPo21b]

Veramo is currently in public beta and is working with the W3C and the DIF
[Ver21c]. The center of the framework is the Veramo Agent written in TypeScript,
which enables the plugin architecture and exposes its functionality to the developer
through a common interface. At all times, the VC and DID standards are followed,
while allowing complete freedom and flexibility in all other areas. The Veramo agent
implements four basic components for messaging, identifiers, credentials, and keys,
which can be seen in figure 4.1. [Ver21d]

Veramo DID Agent

Messages Identifiers Credentials Keys Custom

Figure 4.1: Veramo Agent (extracted from [Ver21d])

The framework provides various core plugins based on existing open-source work,
which generally allow things like creating and resolving DIDs based on various
DID methods, as well as issuing, retrieving, and exchanging credentials through
DIDComm v2 [Ver21d, Ver21a], while providing a template for creating custom
plugins [Ver21b]. Similar to Mattr and Trinsic, Veramo provides some posts on
fundamentals on VCs and DIDs and some quick guides with sample code on how
to use Veramo regarding setup with Node, React, React Native, the Commandline
Interface (CLI), and deployment options of the agent for Heroku and AWS [Ver21d].
Veramo and all its components are completely open-source, with the development
team being quite active with commits and answering Q&As as well as tickets on
GitHub. A mobile wallet is missing, and its interoperability has not been proven
[Hom21] with Homeland Security Plugfest.

40 4 Reference Implementation

Azure AD for Verifiable Credentials
The last provider is again a platform solution: Azure AD for Verifiable Credentials.
Microsoft offers a platform solution to use VCs and DIDs in combination with Active
Directory. The product is currently a public preview, with which companies can send
VCs to users’ Microsoft Authenticator app. The app acts as a mobile wallet where
users can manage and present their VCs. The cost for the solution is usage-based,
but free for testing purposes with a developer account. Microsoft is collaborating
with members from the DIF and W3C on this and has followed standards like DID,
VC, Sidetree, Well-Known DID Configuration, Self-Issued OpenID Provider (SIOP)
and Presentation Exchange for their implementation. Its interoperability has not
been proven with Homelands Security Plugfest [Hom21]. [NQ21, Sim21, Mic21]

Microsoft uses OpenID Connect to exchange credentials via a token between an
Active Directory and the Authenticator app. The credentials are held directly in the
app, whose lifecycle can be managed via the Azure AD Verifiable Credential API/
SDK. This includes for example issuance and presentation requests. For the DIDs,
Microsoft uses the did:ion DID method, which lets DIDs be anchored on the Bitcoin
blockchain via the ION network. The DID document is contained directly in the
long form of the DID, or can be retrieved after anchoring on the blockchain via the
IPFS network, which is a decentralized file system. ION is a Microsoft-developed
layer 2 public permissionless network on top of the Bitcoin blockchain. It is based
on the DIF specification “Sidetree” and implementation they helped to develop
and does not need tokens, validators or other consensus mechanisms. Writing and
reading payloads on the Bitcoin Blockchain is the only necessity for the network to
function. In order for the Microsoft Authenticator app to resolve the DID documents
of the ION DIDs, the Microsoft Resolver can be used, which provides an API to
communicate with the ION network. The described workings can be seen in figure
4.2. [NQ21]

Users
Credential

Microsoft Resolver

Company
Azure AD

Azure AD Verifiable
Credential API

Microsoft Authenticator
App

L1: Bitcoin Network

L2: ION Network

Figure 4.2: Azure AD for Verifiable Credentials (based on [NQ21])

4.2 Core Principles 41

This concludes the description of all four solutions, their structure, and their function-
ality. In the next section, some core principles and its implications for the reference
implementation will be presented.

4.2 Core Principles
As previously stated, the reference implementation should exemplarily implement
four providers in such a way that they map to the VC lifecycle as much as possible.
This enables a practical validation of the promises made by the providers and can
thus offer insight into the existing or missing range of functionality. This way,
possible blind spots or even insufficient features can be identified, which can be used
to further improve the available solutions. This approach can additionally generate
added value for developers who want to use SSI technologies in their projects, since
actual experiences, capabilities, and code from a real implementation process can be
reviewed and reused.

Since the results of the implementation are also to be incorporated directly into a
new developer-oriented evaluation framework, there are some key considerations that
must be defined beforehand. To meet the objectives described in this section, the
following principles were established:

• Use-case agnostic: In order to represent the VC lifecycle as broadly and
standardized as possible, the reference implementation should not be bound to
the requirements and specifics of a use case. Focusing on a specific use-case
could possibly lead to certain parts of the VC lifecycle being underrepresented
or not implemented at all. Such an open approach can also invite a closer look
and implementation of specific facets of a technology that would have been
unnecessary for a use case. This also means that the reference implementation
must be accessible in such a way that it can be accessed relatively independently
of the technology stack being used for a potential use case.

• Flexible architecture: The reference implementation should leverage a software
architecture that makes it straightforward to plug in different SSI solutions.
Peculiarities and complexities should be abstracted away to create a flexible
and resilient architecture.

• Community efforts: Since the SSI community is very active, it should be
checked beforehand which previous work can be reused for the implementation.
This applies to both the architecture and the software libraries used. In this
way, it can be ensured that the work does not disregard the considerations and
requirements of the community.

• Implementation experience: Throughout the entire development process, ob-
jective experiences and findings should be documented and summarized. As
already mentioned, these may be relevant for other developers, the providers,
and also for the mentioned evaluation framework.

42 4 Reference Implementation

• Prototype: The implementation should focus on the architecture and function-
ality according to the VC lifecycle, not on production readiness. Proper error
handling, edge case handling and tests are out of scope for this work.

Taking these five points into account, the goal is to create a reference implementation
that is helpful for developers and meaningful for the evaluation framework. A
RESTful API was chosen as the basic implementation form, since it is technology-
independent and can be used in various programming languages and environments.
It is only necessary that HTTP requests can be sent, which allows a high degree
of flexibility in later applications. To implement this, TypeScript was chosen as it
was the only language where most solutions offer SDKs for. In addition, other basic
libraries in the SSI area are written in TypeScript or JavaScript and would thus
integrate more easily into the implementation to possibly add missing features. Unlike
JavaScript, various features of TypeScript allow cleaner and more robust code [Zam20,
p. 87] that can simultaneously benefit from much of the existing JavaScript packages
being made available from the open-source community. Building on this decision,
Node.js was selected as the JavaScript runtime that can be used in combination
with the express.js library to develop highly scalable web applications such as
APIs [Ope21a, Ope21b]. To make TypeScript work in this environment, various
dependencies such as TypeScript itself, ts-node, eslint, and some type definitions
were installed via the Node Package Manager. The entire project described in this
work is open-source and available on GitHub1.

To enable a flexible software architecture within the described technological skeleton,
the factory method and singleton design patterns were chosen to allow for a pluggable
architecture. These considerations resulted in a reference architecture, which can be
seen in figure 4.3.

Provider

Factory

Routes

Figure 4.3: Reference architecture

At the center of this architecture is a factory as an abstraction and mediation layer,
which on the one hand allows plugging in different providers but at the same time
mediates between them and the actual routes. Routes are the direct point of contact

1https://github.com/strumswell/ssi-master-thesis

https://github.com/strumswell/ssi-master-thesis

4.3 Routes 43

for requesters of the API and expose the actual functionality to cover the VC lifecycle.
More detailed explanations of these layers can be found in the next sections.

4.3 Routes
This work is roughly based on the ideas of the W3C Credentials Community Group,
which has created an unofficial draft API definition called “Verifiable Credentials
HTTP API”. This describes the structure of an API with all its routes, request,
as well as response bodies, which can be used for the VC “lifecycle management”.
The group defined API contracts according to the OpenAPI standard, which were
originally intended to be used as a basis for verifying interoperability of VCs issued
by different providers (see interoperability report from [Hom20]). It is important to
note that the reference implementation is based on the state of the API contract
as of April 2021 (v0.0.2-unstable), as minor things have changed since then. The
contract is strongly based on the VC standard and divides the API into resources
for the three roles issuer, verifier, and an optional holder. This includes resources
for issuing and verifying VCs/ VPs, and deriving, as well as revoking VCs. At this
point, it should be emphasized again that this is an API definition and not an actual
implementation. [Wor21a, Wor21b]

With regard to the reference implementation, this preliminary work is helpful, even if
it does not fully cover the whole VC lifecycle. Therefore, some changes and additions
have been made. A graphical representation of the API definition is shown in figure
4.4, which also allows testing of the individual routes.

All changes made to the original definition are summarized by the following points:

• Provider selection: Since four providers should be addressable via the API, a
query parameter was added to each route, which is based on a custom provider
schema definition. Thus, it is possible to specify which provider should handle
a request.

• Destination selection: Another query parameter allows defining whether a
request targets the local or a remote agent. This mainly includes the issuing
route for a VC, which allows a VC to be sent directly to the subject’s agent via
DIDComm or QR code. In other cases, such as transferring VCs, presenting or
requesting presentations, this can be done directly via the request body. For
this purpose, the schema GenericMessage was defined, which in its structure
is roughly based on the DIDComm data model with only necessary fields.

• Added routes: To complete the lifecycle coverage, a route to create a presentation
request has been added to the verifier, as well as routes to store, delete, transfer
VCs and present VPs as a holder. For the request and response bodies, existing
schemas were reused as much as possible.

• Response bodies: Since some response bodies contained too many unnecessary

44 4 Reference Implementation

attributes for the requirements of the API, the schema GenericResult was
introduced, which only describes whether the operation was successful and
whether there were errors. This schema is used for verifying, storing, deleting,
and transferring VCs and verifying, as well as requesting/ presenting VPs.

Figure 4.4: Modified API definition (based on [Wor21a])

The goal of the customizations was to ensure that the original API definition did not
constrain the implementation, while retaining fundamental parts of the community
work. Figure 4.4 shows on the one hand all defined routes, but also that they
have been divided into the different roles. This concept was also reused for the
implementation by dividing the routes into HolderRoutes.ts, VerifierRoutes.ts,
and IssuerRoutes.ts. These implement the code for the routes they contain by
accessing the provider classes generated by the factory. The used design patterns
built on top of these are discussed in the next section.

4.4 Factory 45

4.4 Factory
As already mentioned in section 4.2, the factory method and singleton design patterns
were chosen for the software architecture. Factory method belongs to the creational
patterns and thus influences how the instantiation process is carried out. A developer
can thereby decide independently of the system how objects are created, which
enables a high degree of flexibility. It defines an interface or an abstract class for
the creation of objects, whereby the instantiation of objects is done by subclasses
instead of a class. This is useful, for example, if a class does not yet know which
objects it needs to create at runtime. [Gam95, pp. 81, 85, 107-108]

This pattern is appropriate because a request determines which solution and thus
which objects have to be created. In addition, it allows the complexities of the
individual providers to be abstracted away, so that when defining the individual
routes, only the concrete factory class must be called, which returns the correct object
of the requested provider. This way, the routes only need to be programmed once and
additional solutions can be added afterwards without having to change the code of the
routes. Figure 4.5 shows a UML diagram that represents the concrete factory method
pattern in the reference implementation. The interface Factory defines a method
createProvider(), which is implemented by the class ServiceProviderFactory.
This is the class which is instantiated, for example, in the routes and is used to
retrieve the object of a provider. A provider is the class of one of the four solutions
that implements basic methods like the VC issuance defined by the ServiceProvider
interface.

«interface»
ServiceProvider

ConcreteProvider

«interface»
Factory

createProvider()

ServiceProviderFactory

createProvider()
«Instantiate»

Figure 4.5: Factory method pattern in reference implementation (inspired by [Gam95, p.
107])

As opposed to this, the singleton pattern is used in the concrete provider classes
and allows that only one globally callable instance of a provider class can be cre-
ated [Gam95, p. 127]. The rationale for this is that no more than one object is
needed, caching is simplified, and multiple provider objects could lead to unforeseen
complications, especially in messaging flows.

How these design patterns were implemented in the reference implementation can be
seen as an example in the following listings. The starting point for the example is a

46 4 Reference Implementation

route for verifying a VC in the VerifierRoutes.ts, seen in listing 4.1.

1 const router = express.Router();
2 const factory = new ServiceProviderFactory();
3 router
4 .post("/credentials/verify", providerCheck, async(req, res) => {
5 const query = req.query.provider.toUpperCase();
6 const body = req.body.verifiableCredential;
7 const provider = factory.createProvider(ServiceType[query]);
8 const result: GenericResult =
9 await provider.verifyVerifiableCredential(body);

10
11 if (result instanceof Error) {
12 res.status(500).send(<GenericResult>{
13 success: false,
14 error: result.message
15 });
16 } else {
17 res.status(200).send(result);
18 }
19 })
20 ...
21 export = router;

Listing 4.1: Extract of verifier routes

The POST method for verifying a VC is attached to the router (line 4). A
providerCheck is appended as middleware, which checks whether the provider
specified in the query is indeed valid. Within the route body, the provider object is
created via the ServiceProviderFactory, which should handle the request (line 7).
This object is then used in line 9 to verify the VC in the request body, the result of
which is then sent as a response to the requester. By exporting the router object
(line 21), all injected routes can be imported into index.ts and made available. This
example shows that no provider-specific code is present in the route code due to
the factory method pattern. To show how the ServiceProviderFactory works, see
listing 4.2.

1 export class ServiceProviderFactory implements Factory {
2 createProvider(type: ServiceType): ServiceProvider {
3 switch (type) {
4 case ServiceType.VERAMO:
5 return VeramoProvider.getInstance();
6 case ServiceType.Mattr:
7 return MattrProvider.getInstance();
8 case ServiceType.TRINSIC:
9 return TrinsicProvider.getInstance();

10 case ServiceType.AZURE:
11 return AzureProvider.getInstance();

4.4 Factory 47

12 default:
13 return null;
14 }
15 }
16 }

Listing 4.2: Extract of service provider factory

The class ServiceProviderFactory implements the createProvider method ac-
cording to the Factory interface. If this method is called with the desired provider
(ServiceType), e.g. listing 4.1 line 7, the singleton object corresponding to the
provider is returned via a switch statement. According to the factory method pat-
tern, all provider classes implement the ServiceProvider interface and its signatures
as concrete methods. This can be seen exemplarily in listing 4.3.

1 export interface ServiceProvider {
2 deleteVerifiableCredential(identifier: string):
3 Promise<CredentialDeleteResult>;
4 ...
5 }
6
7 export class VeramoProvider implements ServiceProvider {
8 async deleteVerifiableCredential(identifier: string):
9 Promise<CredentialDeleteResult> {

10 const db = new VeramoDatabase();
11 const result: CredentialDeleteResult = { isDeleted: false };
12 try {
13 const isDeleted = await db.deleteCredential(identifier);
14 result.isDeleted = isDeleted[0];
15 result.message = isDeleted[1];
16 return result;
17 } catch (error) {
18 return error;
19 }
20 }
21 ...
22 }

Listing 4.3: Example of provider implementation

In this case, the class VeramoProvider implements the interface ServiceProvider
with its signatures like deleteVerifiableCredential() concretely, to delete a VC
from the Veramo agent database.

Now that the factory layer itself and how it acts as a mediator between the other
layers has been described, the next section will focus on the concrete integration of
the selected providers and its resulting architecture.

48 4 Reference Implementation

4.5 Provider Integration
Having looked at the general architecture and its concrete implementations concerning
routes and abstractions, this section focuses on the integration of the individual
providers. For this purpose, figure 4.6 shows the concrete architecture of the reference
implementation, which is based on the previously defined reference architecture.

Figure 4.6: System architecture

This contains the previously defined types of routes at the bottom, but also the
provider factory and the four providers above it. Added at this point are mainly
provider-specific elements like callback services, but also a nginx proxy that surrounds
the reference implementation. This proxy is assigned a domain so that external
components can correctly address internal components such as callback or messag-
ing services. The specific provider implementations, its peculiarities and gained
experiences will be discussed in more detail in the next subsections for each provider.

4.5.1 Mattr
With regard to the integration of the Mattr provider into the reference implementation,
the free tier and the well-structured documentation that covers all functionality
proved to be helpful. Thus, a large part of the VC lifecycle could be integrated by
simply addressing the corresponding endpoints of the Mattr REST API. These take
care of any logic and can be used to manage DIDs, their keys, VCs, VPs, revocation
lists, as well as presentation templates on their backend. The support of BBS+
for ZKP credentials, revocable credentials (RevocationList2020) and LD proofs is
directly integrated into the platform as well. In addition, the company transparently
discloses which standards are currently supported to which extent and which will

4.5 Provider Integration 49

follow in the future [MAT21k, MAT21l]. For mobile wallet interactions concerning
VC issuance, an OIDC provider (see subsection 2.2.3) like Auth0 was necessary
at the time of implementation. Its initial setup took some time, but was feasible
due to the good documentation. By now, VCs can also be issued directly using
Mattr’s DIDComm v2 module, QR codes, or deep links to the Mattr mobile wallet
without an OIDC provider. With regard to presentation requests and its verification
results, the sample apps were used to integrate a callback service into the reference
implementation, although this flow can also be implemented via OIDC with greater
effort. Another positive aspect was that a total of less than five things, such as OIDC
provider or the callback services, needed to be set up with less than 100 LoC needed.
The Mattr team also actively maintains their external Slack workspace. They are
quick to respond to questions and issues from platform users, and offer private calls
in some cases. On the one hand, it is possible to communicate with Mattr employees
and other users in a forum-like manner, or directly engage via chat. In summary,
the broad coverage of the VC lifecycle, the large and production-ready feature set,
and the developer-friendly documentation with tutorials stood out positively. Mattr
therefore offers developers deep but simple and well-documented access to various
current technologies and facets of SSI.

Nevertheless, some things were noticed that could be problematic and restrictive under
certain circumstances. For example, on-boarding to the platform has been relatively
cumbersome in April 2021, as it was necessary to join the official Slack channel
after successful registration, where support then triggers the rest of the process
manually. After the cloud agent had been created, the password was communicated
by the support via Keybase. An automated process without the need of Slack and
Keybase would be more pleasant, whereas this seemed to be only an interim solution.
Additionally, some features are not or only partially usable in combination, such
as the support of BBS+ only for credentials based on did:key or did:ion. Finally,
it should be noted that the private keys for all DIDs and the whole tech stack is
managed owned by Mattr. This reflects the platform nature of Mattr, which does not
allow developers to extend basic functionality or contribute to the cloud platform.
Custom deploy options are not possible, and a public issue tracker for known issues
does not exist. If the existing functionality is sufficient, this is certainly not a problem,
but the resulting inflexibility can be restrictive and make custom flows impossible.
So potential developers will need to look closely at whether Mattr’s approach aligns
with their goals and product strategy.

The majority of the integration took place in MattrProvider.ts, which imple-
ments the ServiceProvider interface. Since this class implements any function-
ality via HTTP requests, listing 4.4 shows how this is done in the context of
directly verifying a VC object. However, it should be noted that methods such
as issueVerifiableCredential() are significantly more complex, as specific logic
such as the distinction in issuance to a wallet or not must be considered accordingly.

50 4 Reference Implementation

1 async verifyVerifiablePresentation(body: VerifiablePresentation):
2 Promise<GenericResult> {
3 const request = { presentation: body };
4 const authToken: string = await this.getBearerToken();
5 const result: GenericResult = {
6 success: null,
7 };
8
9 try {

10 const response = await fetch(`.../presentations/verify`, {
11 method: "POST",
12 body: JSON.stringify(request),
13 headers: {
14 "Content−Type": "application/json",
15 Authorization: `Bearer ${authToken}`
16 },
17 });
18 const verificationResult = await response.json();
19 result.success = verificationResult.verified;
20 result.error = verificationResult.reason;
21 return result;
22 } catch (error) {
23 return error;
24 }
25 }

Listing 4.4: Example of Mattr verification implementation

Additionally, helper methods were implemented to generate authentication tokens
for communcating with Mattr’s API, or to cache QR codes containg VC issuance
requests. Especially interactions with the latter required several extra implementa-
tions that enable the generation of issuance and presentation requests in the form of
QR codes via an OIDC provider to Mattr. Starting with the issuance of a VC to
such a wallet, the type, and attributes of the VC must be prepared at the OIDC
provider and Mattr. The resulting provider ID can then simply be referenced in
an issuance URL and, if desired, encoded in a QR code. By scanning this, the
associated VC can be obtained directly in the Mattr wallet app. This logic is part of
the MattrVerifierService.ts and can be seen in listing 4.5.

1 private getOIDCIssuerQRCode(oidcIssuer: string): Buffer {
2 if (this.issuerQrCache.has(oidcIssuer))
3 return this.issuerQrCache.get(oidcIssuer).image;
4
5 const qrcode: Buffer = qr.imageSync(
6 `openid://discovery?issuer=${process.env.Mattr_URL}
7 /ext/oidc/v1/issuers/${oidcIssuer}`,
8 { type: "png" }

4.5 Provider Integration 51

9);
10 this.issuerQrCache.set(oidcIssuer, qrcode);
11 return qrcode;
12 }
13 }

Listing 4.5: OIDC issuance QR code generation

To verify a VC from the Mattr wallet app, a presentation request must be prepared.
For this purpose, a presentation template is first defined on the Mattr platform,
which contains, for example, the allowed issuers and the requested attributes of
a requested VC (frame). Mattr assigns a unique ID to this template. This ID
can then be used in the first step of provisioning in the reference implementation.
Here the actual presentation request is prepared with the verifier DID, the template
ID, an expiration date and a callback URL via the Mattr API. In the next step,
authentication keys are retrieved as a DID URL from the verifier DID document via
the Mattr platform to sign the presentation request via the same platform in the
next step. The resulting JWS payload is cached and a QR code is generated with a
public URL of the reference implementation. This process can be seen in listing 4.6.

1 public async generateQRCode(request: GenericMessage): Promise<Buffer> {
2 const templateId: string = request.body.request.credentialType;
3
4 // Check cache
5 if (this.qrCache.has(templateId))
6 return this.qrCache.get(templateId).image;
7
8 // Prepare QR code and JWS payload URL
9 const publicUrl = this.publicUrl;

10 const provisionRequest =
11 await this.provisionPresentationRequest(publicUrl, request);
12 const didUrl = await this.getVerifierDIDUrl(request.from)
13 const didcommUrl =
14 await this.signPayload(publicUrl, didUrl, provisionRequest);
15 const qrcode = qr.imageSync(didcommUrl, { type: "png" });
16
17 // Cache and return it
18 this.qrCache.set(templateId, qrcode, request.expiresTime);
19 return qrcode;
20 }

Listing 4.6: Generate QR code for OIDC presentation reqest

When the QR code is scanned with the Mattr wallet app, the QR route of the
MattrVerifierRoutes.ts is called, which returns the cached JWS payload url.
This is the starting point for all further interactions between the wallet app and
the Mattr platform. The callback route (callback verifier service in figure 4.6) in
the reference implementation allows Mattr to report whether the presentation was

52 4 Reference Implementation

successful and the VC could be verified. Both routes were defined via the express
router.

Finally, six out of ten method signatures of the ServiceProvider interface could be
implemented directly, whereas all functionalities except the transfer of VCs are at
least indirectly part of the platform. In the next subsection, Trinsic will be discussed
in the same context.

4.5.2 Trinsic
The integration of Trinsic into the reference implementation proved to be pleasant.
This was mainly due to their complete documentation and their Trinsic Studio
dashboard. With the latter, an organization, associated credentials, and verification
templates could be created within a few minutes using a simple web GUI. This
is however also possible programmatically via their API, which leaves room for
automation and is also well-documented. The resulting IDs could later be used to
trigger the issuance and presentation flows using Trinsic’s JavaScript SDK, which
also includes type definitions for TypeScript. So in total there were less than five
things to prepare and less than 100 LoCs needed to start implementing the VC
lifecycle. With regard to support, there is no public issue tracker, but there are
various other options such as chat, Slack, and mail. During the implementation, it
was also possible to establish contact with the CEO, who was available at all times
to answer questions. Altogether, no other solution made the implementation process
so quick and easy.

The focus of the open-source Hyperledger Indy stack is noticeable from a techno-
logical point of view. Only JSON credentials and CL signatures for revocation,
DIDComm v1, Aries exchange protocols and Hyperledger-specific DID methods
like did:sov are supported. Newer technologies like DID methods based on public
permissionless blockchains are not supported. In addition, functionality is abstracted
even further than Mattr, which increases user-friendliness but hardly allows any
flexibility. Thus, no custom DIDs can be generated, and no VCs can be directly
issued or verified without first creating a template. Direct access for generating VPs
on the cloud agent or the ZKP function is also not available. All these things are
managed in the background and abstracted away by Trinsic and the mobile wallet.
This can certainly be sufficient for certain use cases, but maybe too inflexible for
others. Just like Mattr, developers are completely dependent on Trinsic in terms
of the tech stack and private key management. This means that developers cannot
perform custom deployments to implement their own architectures independent of
Trinsic. In addition, the functionality of the platform cannot be extended through the
developer’s own efforts, and no code can be contributed like in open-source solutions.
The company is trying to address many of the missing functionality mentioned above
with the Core v2 platform, which is currently in closed beta. Latest technologies
such as JSON-LD credentials, LD proofs, BBS+, presentation exchange, DIDComm
v2 and new DID methods such as did:key or did:web are supported here. Trinsic

4.5 Provider Integration 53

could thus catch up with Mattr in terms of supported technologies. Table 4.1 shows
the current roadmap of the Trinsic platform.

Table 4.1: Trinsic roadmap (based on [Ril21])

Type Current Beta Future

Data Exchange JSON JSON-LD JWT
CL signatures BBS+ signatures OIDC SIOP
Aries exchange Presentation exchange

Communication did:peer did:key WACI
DIDComm v1 DIDComm v2 BLE, NFC
HTTP transport gRPC transport

Public Trust did:sov did:key, did:web did:un, did:ion
Hyperledger Indy did:indy

The main part of the implementation takes place in the TrinsicProvider.ts, which
implements the ServiceProvider interface. To communicate with the Trinsic API,
the JavaScript SDK was used to create an object of the CredentialsServiceClient
class. This is done in the constructor so that the object is available immediately
after initialization. This can be seen in listing 4.7.

1 export class TrinsicProvider implements ServiceProvider {
2 client: CredentialsServiceClient;
3
4 private constructor() {
5 this.client = new CredentialsServiceClient(
6 new Credentials(process.env.TRINSIC_KEY),
7 { noRetryPolicy: true }
8);
9 }

10 ...
11 }

Listing 4.7: Connecting to Trinsic API via SDK

How to programmatically issue a VC to the mobile wallet via Trinsic can be seen
in listing 4.8. As required by the ServiceProvider interface, this is done by imple-
menting the issueVerifiableCredential() method that first checks whether the
requester actually wants to issue a pre-defined credential to the wallet. If this is not
the case, it is informed that only predefined credentials can be issued to a wallet.
If everything is correctly defined, the ID of the credential template as well as the
values for the attributes of the credential are obtained from the request body. The
GenericMessage schema in the request body is used for this. An object is formed
from these values, which is submitted to the API via the Trinsic SDK and results

54 4 Reference Implementation

in a CreateCredentialResponse object. The offerUrl contained therein is then
encoded in a QR code, which can then be scanned via the Trinsic wallet to retrieve
the VC.

1 async issueVerifiableCredential(
2 body: IssueCredentialRequest | GenericMessage,
3 toWallet: boolean
4): Promise<IssueCredentialResponse | Buffer> {
5 try {
6 if (!toWallet) throw Error("Only issuance to Trinsic wallet...");
7 if (isGenericMessage(body)) {
8
9 // Prepare request body for Trinsic

10 const message: GenericMessage = body;
11 const request = {
12 definitionId: message.body.credentialType,
13 connectionId: null,
14 automaticIssuance: false,
15 credentialValues: message.body.claimValues,
16 };
17
18 // Generate QR code with offer URL
19 const vcOffer: CreateCredentialResponse =
20 await this.client.createCredential(request);
21 const qrcode: Buffer =
22 qr.imageSync(vcOffer.offerUrl, { type: "png" });
23
24 return qrcode;
25 } else {
26 throw Error("Issuing manual VCs is not supported...");
27 }
28 } catch (error) {
29 return error;
30 }
31 }

Listing 4.8: VC issuance with Trinsic

In the case of Trinsic, three of ten signatures of the ServiceProvider interface could
be implemented directly, while all parts except for the transfer of VCs are at least
indirectly part of Trinsic. Among them are the methods for issuing, deleting and
creating presentation requests. The method for revoking credentials could have been
implemented theoretically, but was not part of the free tier. After a presentation
request has been successfully performed by the user, the result of the verification
can be received via a webhook in the reference implementation. Similar to Mattr,
a route was created via Express, to which the Trinsic platform can send the result.
This webhook URL also had to be added via the Trinsic Studio beforehand, since
the URL is not part of the presentation request body, as opposed to Mattr. Listing

4.5 Provider Integration 55

4.9 shows how the webhook route is implemented. This forms, together with the
verification method, the callback verifier service as shown in the system architecture
in figure 4.9.

1 router.post("/webhook", async (req, res) => {
2 try {
3 if (req.body.message_type === "verification") {
4 const verification =
5 await trinsic.client.getVerification(req.body.object_id);
6 console.log(verification);
7 }
8 } catch (error) {
9 console.log(error.message || error.toString());

10 }
11 res.status(200).end();
12 });
13
14 export = router;

Listing 4.9: Trinsic webhook for verification result

At this point, all the specifics of the Trinsic platform and its integration into the
reference implementation have been addressed. In the next subsection, Veramo’s
implementation will be presented.

4.5.3 Veramo
The integration process of Veramo into the reference implementation proved to
be a mixed experience. Especially the CLI offered a good first start to try out
Veramo. Thus, all features like creating DIDs, issuing, verifying, and requesting
VCs could be tested in advance without any implementation process. Within the
implementation, the very high degree of flexibility was especially noticeable. None
of the previous solutions supports this amount of DID methods (did:key, did:web,
did:ethr, did:ion), whereas the connection to the Uniresolver allows resolving almost
any DID. In terms of deployment options, the Veramo agent can be used in web
frontends, smartphone apps, and backend systems through the TypeScript backend,
while the agent’s modularity also allows tasks to be distributed among different
agents. This allows for different architectures where, for example, one Veramo cloud
agent implements only key management, another implements the issuing of VCs, and
the agent in the mobile wallet implements only messaging and credentials storage.
Since the Veramo agent also exposes all of its functionalities via a REST API with
OpenAPI documentation, similar to Mattr and Trinsic, all functions can also be used
on non-supported platforms via HTTP requests. This is not possible with any of
the other solutions. In addition, with the DIDComm v1 implementation, complex
communications between Veramo agents could also be implemented, such as the
transfer of credentials between holders. Because of the open access to these modules,

56 4 Reference Implementation

pretty much any use case can be realized, which is not possible due to limitations
in the other solutions. Since the integration, Veramo released a DIDComm v2
module which replaces the old alpha version of DIDComm v1 [Ver21a]. Especially
for messaging cases, it was very helpful that a Veramo agent could be created on
Heroku with a one-click button, making such multi-agent flows testable without
many preparations. In addition, the React Native integration was tested, with which
a demo mobile wallet was created in a short time to test the management of VCs
and messages. In contrast to the platform solutions, the flexibility, independence but
also the complete control over architecture, flows, code, and data such as the VCs
and the private keys of DIDs stand out.

Nevertheless, there were a few things that complicated the implementation process.
The now updated documentation was either outdated or not available at all in April
2021. Only the code of the CLI implementation could be used as a guide, which in
combination with some guesswork and trial and error led to the desired goal. Even
today, not all areas and features are covered so far, such as code and explanations for
the messaging system, how to issue and verify credentials, how to resolve DIDs, that
there is a did:ion plugin, types of events in the event system and much more. The
documentation really only covers the most necessary areas to get started without any
hint how to implement the VC lifecycle, which may discourage some developers. Due
to the nature of the solution, more than five things had to be prepared with respect
to the agents and its plugins with, among others, well over 100 LoCs to actually use
the solution. With regard to the technical limitations, the following shows a list of
some of them.

• Credential type: Currently, only JWT credentials are supported. Support for
JSON-LD signatures is currently being worked on [TCSL21].

• Revocation: There are no up-to-date plugins for revocation. There is only a
library from two years ago that can be used with manual effort in Veramo
to create revocable credentials with did:ethr and later revoke them as well.
Support for RevocationList2020 does not exist, but can be retrofitted with
open-source libraries from Digital Bazaar due to Veramo’s open architecture.

• Selective Disclosures & ZKP: Due to the nature of JWT credentials, this is
not currently possible. Veramo recommends keeping credentials as atomic as
possible so that the user can present individual credentials with only a few
attributes. Additionally, Veramo currently uses a proprietary exchange data
format instead of the DIF Presentation Exchange format. However, support for
BBS+ in combination with LD proofs and Presentation Exchange is planned
[TCSL21].

• Verification: There is no proper API for verifying VCs and VPs. Meanwhile,
only the validity of the JWT can be checked, but this does not retrieve the DID
document for the issuer’s public key, does not check for revocation, integrity,
or other important parameters. The developer currently has to check all of
these by itself. However, this is also being looked at by the development team,

4.5 Provider Integration 57

which is working on a comprehensive verification API [Rie21].

This shows that Veramo is in beta and that various areas are not yet ready for
production use. In contrast to the other solutions, the open architecture allows that
missing functions can be retrofitted at any time. This behaviour is also supported
by the Veramo developers, as they want an ecosystem of community plugins.

Looking at the reference implementation, there is more effort required compared
to the platform solutions, as any logic has to be implemented via the Veramo
API itself. In the middle of this is the VeramoProvider.ts, which implements the
ServiceProvider interface and thus all lifecycle-specific methods. In order to access
the methods of the Veramo API and its included plugins, an object of the Veramo
Agent is created and exported in the VeramoSetup.ts so that it can be directly
imported and used in various places. To create the agent, all necessary plugins must
be imported in the form of libraries and taken into account when initializing the
object. This can be seen exemplary in listing 4.10.

1 // Core interfaces
2 import { createAgent, IDIDManager, ... } from "@veramo/core";
3
4 // Core identity manager plugin
5 import { DIDManager } from "@veramo/did−manager";
6
7 // Credential Issuer
8 import { CredentialIssuer, ICredentialIssuer }
9 from "@veramo/credential−w3c";

10 ...
11
12 export const veramoAgent = createAgent<
13 IDIDManager & IKeyManager & IDataStore & IResolver & ... >({
14 plugins: [
15 ...
16 new KeyManager({
17 store: new KeyStore(dbConnection, new SecretBox(secretKey)),
18 kms: {
19 local: new KeyManagementSystem(),
20 },
21 }),
22 new DIDManager({
23 store: new DIDStore(dbConnection),
24 defaultProvider: "did:key",
25 providers: {
26 "did:key": new KeyDIDProvider({
27 defaultKms: "local",
28 }),
29 ...
30 },
31 }),

58 4 Reference Implementation

32 new DIDResolverPlugin({
33 resolver: new Resolver({
34 ...
35 key: getDidKeyResolver().key,
36 ...getUniversalResolverFor(["io", "elem", "sov"]),
37 }),
38 }),
39 new CredentialIssuer(),
40 new MessageHandler({ ... }),
41 ...
42],
43 });

Listing 4.10: Veramo agent creation

This is a small excerpt, but it demonstrates the rough concept and functionality.
For the reference implementation, various plugins were implemented for storing and
managing keys, DIDs, VCs, VPs as well as messages, message handlers (DIDComm,
JWT, ...), DID providers, DID resolvers and credential issuance. In addition, event
listeners were utilized to document verification results and submitted presentation
requests. Especially the latter was helpful in testing the multi-agent messaging flows
to let a cloud agent automatically respond to submitted presentation requests via its
API. This part is relatively well documented, but there were problems implementing
the message handlers correctly, which resulted in errors with the validation of
messages like JWT credentials or DIDComm messages. The author’s issue report on
GitHub2 was answered by the Veramo developers on the same day. It was described
that the order in which the different message handlers are integrated in the setup
is significant and was incorrect in the reference implementation. Such small details
are unfortunately not documented and cost considerable time to debug. That being
said, the author was able to identify an actual bug during implementation where
mismatches of signatures between a VC and its VP occur under certain circumstances.
This report3 was also being responded to on the same day and a fix was rolled out in
under two weeks. The developers appear to respond quickly and helpfully in general
on GitHub.

With regard to the actual implementation of the lifecycle in the VeramoProvider
class, the methods of the Veramo agent proved to be well usable. Basic meth-
ods for creating VCs, VPs, verifying messages like JWT credentials and sending
presentation requests are provided, the latter being called Selective Disclosure Re-
quests by Veramo. Looking at the descriptions of this topic in subsection 2.5.2
and the nature of JWT credentials, the term selective disclosure is not well-chosen,
since only a set of credentials and not a set of attributes of one credential are dis-
closed here. In listing 4.11 is a code snippet for creating a VC using the Veramo agent.

2https://github.com/uport-project/veramo/issues/565
3https://github.com/uport-project/veramo/issues/516

https://github.com/uport-project/veramo/issues/565
https://github.com/uport-project/veramo/issues/516

4.5 Provider Integration 59

1 async issueVerifiableCredential(body: IssueCredentialRequest,
2 toWallet: boolean): Promise<IssueCredentialResponse> {
3 try {
4 body.credential.issuer = {id: body.credential.issuer.toString()};
5 const save: boolean = body.options.save?body.options.save:false;
6 const credential: W3CCredential = body.credential;
7
8 const verifiableCredential: W3CCredential =
9 await veramoAgent.createVerifiableCredential({

10 save: false,
11 credential,
12 proofFormat: "jwt",
13 });
14
15 // Prepare response
16 const result: IssueCredentialResponse = {
17 credential: verifiableCredential,
18 };
19
20 if (toWallet) {
21 try { // Send VC to another Veramo agent
22 const msg = await veramoAgent.sendMessageDIDCommAlpha1({
23 save: true,
24 data: {
25 from: verifiableCredential.issuer.id,
26 to: verifiableCredential.credentialSubject.id,
27 type: "jwt",
28 body: verifiableCredential.proof.jwt,
29 },
30 });
31 result.sent = true;
32 return result;
33 } catch (error) {
34 return error;
35 }
36 }
37 return result;
38 } catch (error) {
39 return error;
40 }
41 };

Listing 4.11: Issue a VC with Veramo

At the beginning, the credential object is prepared, which is then converted to a VC
in lines 8 to 13 using the methods. After that, the API response is prepared with
the created VC, or if an error occurs during issuance, the error is sent directly to
the requester as a response. If the request to the API defined that the VC should

60 4 Reference Implementation

be sent directly to the agent of the DID via the messaging endpoint, lines 21 to
35 handle this using the sendMessageDIDCommAlpha1() method. This method has
been deprecated and should be replaced by the new DIDComm v2 implementation.
Considering the scope of this work, a short-term implementation of the new module
has been omitted at this point. This feature is useful, for example, to send a VC
directly to the Veramo agent of a mobile wallet. Mattr and Trinsic offer similar
functions as an alternative to scanning QR codes.

In addition, four other files and classes were created to implement or retrofit Veramo-
specific features. These are briefly described below:

• VeramoDatabase.ts: At the time of development, there was no method to delete
VCs from the local flatfile database. Since the database is in the sqlite format,
the sqlite3 library was used to add that functionality. Since v2.1.0 this is
also a native DataStore functionality.

• VeramoRevoker.ts: This class implements uPort’s ethr-status-registry
library and retrofits the functionality to revoke an VC with a did:ethr within
an on-chain smart contract on the Ethereum Blockchain. This requires a
connection to an Ethereum node or a service such as Infura.

• VeramoRemoteAgent.ts: This class can connect to another Veramo agent that
one has control over. This is more of a helper class that can be used for testing
purposes, for example, to force a cloud agent to automatically respond to a
presentation request via its RESTful API.

• VeramoAgentAPI.ts: Here, the local Veramo agent exposes its methods via
a RESTful API and the associated API docs. Furthermore, a did:web is
automatically set up for the external URL and the associated messaging
endpoint. This is relevant for multi-agent communication flows.

Flexibility and liberty are the main advantages of Veramo, yet the beta status was
noticeable during the implementation. Some central features are not or only partially
available, and from the descriptions it is clear that a lot is happening. Within
a few months, some features were added that made some implementations (see
VeramoDatabase.ts, DIDComm) obsolete. Thus, nine out of ten methods could be
implemented directly, although with technical limitations. In the next subsection,
Azure AD for Verifiable Credentials will be discussed as the last of the four solutions.

4.5.4 Azure
In contrast to Mattr and Trinsic, more than five things had to be prepared including
the Active Directory and additional components. Since the extension for Verifiable
Credentials is still in public preview, a P2 licence is required, which is associated with
higher costs. Alternatively, a developer account can be requested from Microsoft.
Within the subscription a new resource group is created, which must contain a
key vault for keys, a storage account for credential specific rules and display JSON

4.5 Provider Integration 61

files and various other settings. Microsoft provides detailed documentation with
descriptions and illustrations for these steps, so this process was fairly straightforward.
Nevertheless, this can definitely be confusing in some places for Azure beginners.
In the next step, the actual Verifiable Credential can be defined in its content and
styling, which is also described in the documentation. Azure automatically assigns
a URL to this VC schema, which allows it to be retrieved via an OpenID provider.
There are other steps, such as creating an application in Azure so that issuance
and verification can take place in the reference implementation. Positive was the
good and clear documentation which covers all existing functionalities and even very
briefly the example apps. Furthermore, it is certainly interesting for companies that
already use Microsoft products and Active Directory. The VC solution could be
integrated into existing architectures without much effort and less than 100 LoCs for
set up. Azure also comes with the whole range of support options such as chat, mail,
phone and even a forum, which can be used in case of potential problems. Moreover,
it is one of the few solutions that uses ION as the DID method, relying on a public
permissionless blockchain, thus actually creating independent DIDs that can also
embed metadata in their DID documents. With Azure, VCs can be issued to the
mobile app in JWT format and also presented from there as a VP on the basis of a
corresponding request. In addition, VCs can be revoked through the Azure portal.

Nevertheless, the Microsoft solution is incomplete and lacks transparency compared to
the other solutions analysed in this thesis. For example, Azure abstracts various logic
and complexities similar to Trinsic, with the difference that even fewer features are
available, and it is even less clear which standards are used at which point. Through
debugging sessions of the author, it was possible to determine that simple JWT
credentials are exchanged and propriety revoking mechanisms are used. Moreover,
unlike Mattr and Veramo, VCs cannot be issued and verified directly based on a
JSON-LD input either, which means that only VCs whose schema has been defined in
Azure beforehand can be issued or verified. Furthermore, routes for storing, verifying,
revoking, and presenting without request could not be implemented because no APIs
are offered for this. These steps are abstracted away in other process steps, while
the transfer and derivation for ZKPs of VC is not possible at all. Due to the missing
functionalities, it was only possible to directly implement two out of ten features
(issuance, presentation request). In addition, the example projects with code for
issuers and verifiers are functional but not documented at all, which led to some
confusion. Furthermore, basic type definitions for TypeScript seem to be flawed and
even so the code seems to be questionable. There was a GitHub issue [Yeg21] about
this, which the author of this work also responded to, and was eventually closed
without comment by the repository owner. The original creator of the issue announced
that they ultimately decided against the Azure solution. With correspondingly messy
modifications, functionalities for issuance and presentation request routes could
still be implemented. Unfortunately, there is no public issuer tracker for the entire
solution available and corresponding SDKs for the development of customized mobile
wallets are also not available. Additional DID methods, revocations standards, ZKP
technologies such as BBS+ and associated LD proofs have not been announced.

62 4 Reference Implementation

And just like the other platform solutions, there is complete dependency and no
customization options with regard to functionalities or deployments. The data is
either stored by Microsoft in the cloud or in the proprietary Microsoft Authenticator
mobile wallet. In terms of the basic approach, Microsoft’s solution is most similar
to Trinsic, but is not on a par in terms of functionality, documentation, SDKs and
associated examples.

The main part of the implementation takes place in AzureProvider.ts, which imple-
ments the ServiceProvider interface. Unique aspects are that at the beginning of
the class, an object of the CryptoBuilder class of the verifiablecredentials-verification-
sdk-typescript library and a request cache are created as Map<string, any>. The
former can be used to create the requests for Azure, which are then cached in the
request cache, which becomes relevant in later process steps. Listing 4.12 shows an
example of how to create an issuance request via the Azure SDK.

1 async issueVerifiableCredential(body: GenericMessage,
2 toWallet: boolean): Promise<Buffer> {
3 try {
4 if (!toWallet) throw new Error("Only issuance to wallet...");
5 if (!(body.from && body.body.request.credentialType))
6 throw new Error("Please define from and credentialType");
7
8 const requestBuilder = new RequestorBuilder(
9 {

10 ...
11 presentationDefinition: {
12 input_descriptors: [
13 {
14 id: "credential",
15 schema: {
16 uri: [body.body.request.credentialType],
17 },
18 issuance: [
19 {
20 manifest: body.from,
21 },
22],
23 },
24],
25 },
26 } as IRequestor,
27 this.crypto
28).allowIssuance();
29
30 const issuanceRequest = await requestBuilder.build().create();
31 const sessionId = uuidv4();
32 this.requestCache.set(sessionId, issuanceRequest.request);
33

4.6 Results 63

34 const requestUri =
35 encodeURIComponent(`/azure/issue−request.jwt?id=${sessionId}`);
36 const issueRequestReference =
37 "openid://vc/?request_uri=" + requestUri;
38 const qrcode: Buffer =
39 qr.imageSync(issueRequestReference, { type: "png" });
40 return qrcode;
41 } catch (error) {
42 return error;
43 }
44 }

Listing 4.12: Create a VC issuance request with Azure

In the beginning, some error handling is done, which can return corresponding errors
to the requester. If both the credentials type and its schema URL from Azure are
included in the request body, an issuance request object is created between lines 8
and 30. This is cached in the request cache with a corresponding UUID (line 32).
This UUID is integrated into an issuance URL (line 34 – 37), which leads to a route
within the reference implementation. In order for this to be accessed by Microsoft
Authenticator, the URL is encoded into a QR code (line 38 – 39), which retrieves
the issuance request object from the request cache when scanned via the contained
URL. The issuance request is encoded as a JWT and contains all the information
that the app can use to retrieve the actual VC from Azure. The addressed routes
for such interactions originating from the Authenticator app towards the reference
implementation are implemented similarly to the other solutions in the form of
express routes in the AzureUtilRoutes.ts.

This subsection covered all the specifics of the Azure solution and its integration.
The next section summarizes the results of the implementation in more detail.

4.6 Results
Having covered the implemented providers Mattr, Trinsic, Veramo, and Azure in the
last section, the results are now considered with respect to the coverage of the VC
lifecycle and a conclusion is drawn. Furthermore, the scope of the implementation
with respect to unimplemented parts of the individual providers will be considered
in order to provide an overall picture. A summary of all facets and approaches of
the solutions with a coverage score can be found in table 4.2.

The score is calculated as follows: If a process step could be implemented directly
using the available API, one point is awarded. Half a point is awarded if the process
step is indirectly contained in another process step and cannot be implemented
independently via the API. Half a point is also awarded for process steps that had to
be implemented by the author itself using some available API methods in order to be
represented. If the process step could not be implemented, zero points are awarded.

64 4 Reference Implementation

At the end, the points received are added up and displayed as a percentage of all
possible points. The individual steps were not weighted due to different possible
requirements for different use cases.

To show the differences in the implementation in a more granular way, refinements
were added to some steps (see table 4.2). Direct refers to the fact that in this step a
JSON LD object, for example in the form of a VC, can be used directly as an input.
In contrast, Indirect refers to the fact that this process step is part of another
process step or another system (web interface, wallet, ...). For example, in Mattr, the
store step could not be implemented directly, but is indirectly part of the issuance
step, where the created VC is stored in the cloud agent. This distinction is helpful to
show that many unimplemented steps are nevertheless represented by the solutions,
but were often abstracted away. Finally, Comm and QR code are used to document
different ways to interact with other agents/wallets. For example, in Mattr, a VC
can be transmitted to a wallet both by scanning a QR code but also by sending
it directly through a communication module. Considering the scope of the work,
not all facets of the individual solutions were necessarily implemented, which is why
unimplemented features were marked accordingly. In addition, other annotations
concerning (possible) self-implementations and restrictions were added as well.

Table 4.2: Implementation results

Step Feature Mattr Trinsic Veramo Azure

Issue VC Implemented l l l l

Direct l l

QR code l l l

Comm l1 l1 l

Store VC Implemented l

Direct l

Indirect l l l l

Transfer VC Implemented l

Compose VP Implemented l l

Direct l l

Indirect l l l

Present VP Implemented l

Direct l

Indirect l l l

Request VP Implemented l l l l

QR l l l

Comm l1 l1 l

Verify VC/ VP Implemented l l

4.6 Results 65

Step Feature Mattr Trinsic Veramo Azure

Direct l l

Indirect l l l l

Revoke VC Implemented l l2

Direct l l1 l

Indirect l

Delete VC Implemented l l l

Direct l l l

Indirect l l l l

Derive VC Implemented
Indirect l l

Direct Coverage 60% 40% 90% 20%
General Coverage 90% 90% 90% 80%
1 Not implemented
2 Restricted to did:ethr

From these results it is apparent that none of the solutions directly maps to the
complete VC lifecycle. All of them cover the steps issuance and presentation request,
but none of the solutions offers a direct method to derive VCs for ZKP purposes. The
different approaches taken by the solutions are also revealed here. Mattr and Veramo
give developers more freedom and abstract fewer complexities than Trinsic and Azure.
This is noticeable in the fact that it is possible to work directly with JSON-LD
objects from credentials, and more functionalities are exposed through their APIs.
This allows Mattr and Veramo to achieve a score of 75%. Nevertheless, it must be
clearly distinguished that Mattr abstracts and restricts more than Veramo in some
areas, which results however in more finished and production-ready APIs and tools.
Especially in this area, Veramo is still lagging behind, but its high flexibility and
openness makes it possible to retrofit necessary features with existing API methods
with manageable effort. For example, Veramo’s verify method is incomplete, as
described earlier, where missing checks can be implemented by the user. This also
allows, for example, that with the help of the communication module in Veramo the
transfer step could be implemented as the only solution. This is not possible with
Mattr. A potential developer must clearly assess what is important to its use case.

In contrast, Trinsic and Azure abstract away significantly more complexities and
functionality, but this can be accompanied by a faster and simpler implementation
in some cases. In addition, no interaction with VCs as raw JSON-LD objects is
possible here at any point. This ensured that Trinsic and Azure could only achieve
65% and 50%. To further rank the solutions, the following table 4.3 provides a quick
breakdown of some features and standards present.

66 4 Reference Implementation

Table 4.3: Rough feature comparison

Feature Mattr Trinsic Veramo Azure

Format JSON-LD JSON JSON-LD JSON-LD
Proof LD Proofs JWT JWT JWT
ZKP BBS+ CL Signatures
Revocation RevocationList

2020
Indy Revocation
Registry

EthrStatus
Registry2019

Proprietary

Messaging DIDComm v2 DIDComm v1 DIDComm v2
DID Methodkey, web,

ion
sov, peer key, web,

ethr, ion
ion

With regard to related features, it is noteworthy that Mattr is the only solution that
supports LD proofs, various DID methods, BBS+ and RevocationList2020 as a DID
method independent revocation method. In the messaging area, only the precursor
to DIDComm (JSON Web Message) is supported. Technologically, none of the other
solutions can match Mattr at the current stage. Veramo only supports JWT as a
proof format, which is why advanced ZKP technologies such as BBS+ cannot be
supported. Furthermore, there is currently only one library that can be used to
revoke did:ethr credentials with the EthrStatusRegistry2019 method. Nevertheless,
many DID methods are supported and a DIDComm v2 implementation is usable. In
contrast, Trinsic currently has no support for JSON-LD, LD proofs and the benefits
built on top of them. The Hyperledger link becomes apparent here, since only its
technologies such as CL signatures, DID methods, revocation format, and messaging
protocol are supported. However, as described in subsection 4.5.2, the current beta
of Trinsic includes many of these new technologies, which could affect Trinsic’s score
in the future. Announcements from Veramo indicate similar plans. Azure seems to
be quite behind at this point, supporting less standards or only using proprietary
ones.

Now that a basic examination of the individual solutions and their features has been
made, the next chapter will present a new developer-oriented evaluation framework
based on these observations, which could be used to evaluate solutions for SSI based
on a defined set of criteria. For this purpose, the observation from table 4.3 will also
be expanded further.

5 Evaluation Framework

In this chapter, a new developer-oriented evaluation framework for SSI solutions
based on all previous findings is presented. First, requirements for the framework
are defined to clarify which areas the framework should cover. Then, the framework
is built up step by step with its categories, criteria and questions, and finally applied
to the four solutions of the reference implementation in the end.

5.1 Requirements
Unlike previous evaluations from the literature, this framework is not intended to
address architectures, governance models, or cover any sets of ideational principles.
The goal is to provide a tool for developers to pragmatically evaluate, depending on
the use case, SSI solutions for their suitability. This should accelerate the selection
and evaluation process and reduce the hurdles for integrating SSI technologies into
projects. To meet these objectives, the following requirements are initially defined:

• Developer-oriented: A practical value should be created by mapping various
facets and requirements of a developer. On the one hand, this can involve the
functionalities, but also the toolset and its documentation. For this purpose,
experiences from the implementation of the reference implementation as well
as requirements from the expert survey are used. This is to ensure that general
but also domain-specific points are included.

• Expert-oriented: As mentioned in the first point, requirements and opinions
from experts in the field are incorporated into the framework in addition to
insights from this work. This is to ensure that a broad field is covered, but also
that requirements that are relevant to the domain are part of the framework.
The findings from chapter 3 are used for this purpose.

• Technologies: Since SSI is still a relatively young domain, many solutions and
standards are either very young, not ready or not even defined yet. Therefore, it
is necessary that the coverage of some important standards is also represented in
the framework. Thereby, it can be recognized whether corresponding solutions
provide the most current and established technologies. In addition, it must be
taken into account whether governance models behind the individual solutions
can react to the fast-moving space with appropriate measures to e.g. add
support for new technologies.

67

68 5 Evaluation Framework

• Unopinionated: Similar to the reference implementation, the evaluation frame-
work should be use case agnostic. This makes it difficult to establish a generally
valid weighting for the individual categories, since different requirements ap-
ply to different use cases. Therefore, any weighting should be dispensed at
this point, and it should be left to the developer to prioritize and weigh the
individual categories and criteria.

Thus, the foundations for the development of the framework itself have been laid at
this point. In the next section, the actual framework is developed and presented,
taking the requirements into account.

5.2 Framework
As mentioned previously, the development of the framework is based on the experience
gained from the development of the reference implementation as well as on the results
of the expert survey. From the latter, initial categories for more granular criteria
were established in section 3.3, which will be presented and extended in this section.
The corresponding five categories with their criteria are described below.

1. Functionality: The first category is focused on the question, which features
the solution offers the developer, in order to solve its SSI related tasks. This
includes flow coverage, i.e. the extent to which the VC lifecycle can be mapped
by the solution, but also the support of standards. These are particularly
important in an area where openness and interoperability between diverse user-
managed flows and applications are intrinsic values. Both criteria were relevant
both in the expert questionnaire and in the development of the reference
implementation.

2. Flexibility: This is about how freely a developer can interact with the solution.
This was a rather small area in the survey, but was much more apparent in
the implementation in chapter 4. On the one hand, this contains extensibility,
thus to what extent the functionality of the solution can be extended by own
efforts and whether these can be integrated also by e.g. pull requests into the
public code base. Furthermore, it includes the complete deployment field, i.e.
on which type of devices this solution can be used, but also whether there are
quick deployment options for the cloud, for example. The latter in particular
is relevant during the development phase for setting up test environments
as quickly and conveniently as possible. Finally, Flexibility also includes the
platform criterion, which looks at the ways in which the solution can be
addressed. This includes, for example, the number of supported programming
languages and the existence of REST APIs to enable a platform-independent
use of the solutions.

3. Operability: This category primarily considers how usable the solution is in
terms of the developer experience. This includes obvious criteria such as

5.2 Framework 69

support, documentation and, for example, the maturity of the solution. It also
includes attention to industry standards, creating a common conversational
and well-thought-out technological foundation. The last criterion defined was
overhead, which considers the initial effort required to get the solution up and
running. The contents of the category were often part of the expert survey and
also appeared in the reference implementation.

4. Dependency: This category was not directly part of the experts’ answers, but
was partly addressed secondary, for example by Stefan Adolf, and should not be
disregarded considering the principles of SSI. This involves questions about the
extent to which a developer is dependent on the solution creators. For example,
this includes the keys criterion, which is whether a developer has complete
control and access to the private keys of its DIDs. In addition, it considers
whether the tech stack can be under full control of the developer. Finally,
this also includes the cost of the solution and whether there are developer-
specific test accounts, for example. Especially the latter is quite helpful for a
development phase in order not to generate high costs.

5. Involvement: In the last category, the involvement of the solution creators
in the SSI community is considered and thus the closeness to technological
changes. This includes participation in the development of standards as well as
open-source libraries. Additionally, it includes the commitment related to the
own product, i.e. whether the solution is being developed further, whether it
uses existing community work or whether it also incentivizes community help.
This category was created primarily from the results of the expert survey.

During the development of the above criteria, it was considered in the meantime
whether GitHub statistics regarding the processing time and response rate to opened
issues should also be considered for the support criterion. This would certainly
be of added value for developers, as they serve as a point of contact for questions
and problems. However, it was decided not to do this, since not all solutions have
corresponding offers and this would make a generally valid and comparable evaluation
problematic. As an alternative, a question on the existence of public issue trackers
was added. The result of all considerations can be found in table 5.1. In addition,
corresponding questions were defined for each category, as well as their answer type.
By working through these questions, comparability can be created in an evaluation
process.

Table 5.1: Evaluation framework

Criterion Question Type

Functionality
Flow Coverage FC1: What percentage of the VC lifecycle

can be implemented directly?
double

70 5 Evaluation Framework

Criterion Question Type

FC2: What percentage of the VC lifecycle
is generally supported?

double

FC3: Can a wallet be built independently? bool
FC4: What wallet/ storage options
are supported?

[mobile,
cloud,
browser]

Standards FS1: Are ledger-based DID methods supported? bool
FS2: Are non ledger-based DID methods
supported?

bool

FS3: Are JSON-LD credentials supported? bool
FS4: Are linked data proofs supported? bool
FS5: Are BBS+ or CL signatures supported? bool
FS6: Is there support for DIDComm? bool
FS7: Is RevocationList2020 supported bool
FS8: Is there OIDC support? bool

Flexibility
Extensibility LE1: Can the functionality be extended? bool

LE2: Can one contribute to the solution? bool
Deployment LD1: What deployment options are there? [cloud,

mobile,
browser,
mixed]

LD2: Is there a quick deployment option? bool
Platform LP1: Is there a REST API exposing all

necessary functionality?
bool

LP2: Are multiple programming languages
supported by the solution?

bool

Operability
Support OS1: What support options are there? [tel, mail

chat, forum]
OS2: Is there a public issue tracker? bool

Documentation OD1: What percentage of the implemented
lifecycle functionality is described?

double

OD2: Is there an API Documentation? bool

5.2 Framework 71

Criterion Question Type

OD3: Are there any code examples? bool
Maturity OM1: Is there a release version? bool

OM2: Are any features subject to change? bool
OM3: Is the solution older than a year? bool

Standards OT1: Are industry standards being used? bool
OT2: Is interoperability proven by Plugfest? bool

Overhead OO1: Are less than 100 LoCs needed for set up? bool
OO2: How many things have to be set up? [≤5, >5]

Dependency
Keys DK1: Is full control over private keys given? bool
Stack DS1: Can one own the whole tech stack? bool

DS2: Is the stack still usable after
the original developers are gone?

bool

Cost DC1: Is the solution free of charge? bool
DC2: Is there a free developer plan? bool

Involvement
Community IC1: Does the solution provider participate

in community events?
bool

IC2: Have they worked on SSI-related
open-source repositories?

bool

IC3: Have they co-worked on SSI-related
standards?

bool

Product IP1: Is the solution being worked on? bool
IP2: Is the solution leveraging open-source work? bool

With regard to the evaluation and the lack of weightings (see Unopinionated in
section 5.1), one point can be obtained with each question. For questions with more
than one option, the sum of all possible options results in one point, whereby the
score can be a fraction of one. To compensate for the different number of questions
within the categories, the results are normalized by dividing the score of a category by
its number of questions. That way, the results of all categories are equally weighted
and none is over or underrepresented due to different amounts of questions.

The following table 5.2 applies the described framework to each of the four imple-
mented SSI solutions to obtain the described scores. In addition, the sub-scores
for each category are given, so that differences become apparent. The basis for the
scores are the facts and observations that were presented in the last chapter.

72 5 Evaluation Framework

Table 5.2: Scoring of SSI solutions

Criterion Question Mattr Trinsic Veramo Azure

Functionality
Flow Coverage FC1 0.6 0.4 0.9 0.2

FC2 0.9 0.9 0.9 0.8
FC3 1 1 1 0
FC4 0.66 0.66 1 0.66

Standards FS1 1 1 1 1
FS2 1 1 1 0
FS3 1 0 1 1
FS4 1 0 0 0
FS5 1 1 0 0
FS6 1 1 1 0
FS7 1 0 0 0
FS8 1 0 0 1

11.16 6.96 7.8 4.66
(93.0%) (58.0%) (65.0%) (38.83%)

Flexibility
Extensibility LE1 0 0 1 0

LE2 0 0 1 0
Deployment LD1 0.5 0.5 1 0.5

LD2 0 0 1 0
Platform LP1 1 1 1 1

LP2 0 1 0 0
1.5 2.5 5.0 1.5
(25.0%) (41.67%) (83.33%) (25.0%)

Operability
Support OS1 0.75 0.75 0.25 1

OS2 0 0 1 0
Documentation OD1 1 1 0 1

OD2 1 1 1 0
OD3 1 1 1 1

Maturity OM1 1 1 0 0
OM2 0 0 0 0
OM3 1 1 0 0

5.2 Framework 73

Criterion Question Mattr Trinsic Veramo Azure

Standards OT1 1 1 1 1
OT2 1 0 0 0

Overhead OO1 1 1 0 1
OO2 1 1 0 0

9.75 8.75 4.25 6.0
(81.25%) (72.92%) (35.43%) (50.0%)

Dependency
Keys DK1 0 0 1 0
Stack DS1 0 0 1 0

DS2 0 0 1 0
Cost DC1 0 0 1 0

DC2 1 1 1 1
1.0 1.0 5.0 1.0
(20.0%) (20.0%) (100%) (20.0%)

Involvement
Community IC1 1 1 1 1

IC2 1 1 1 1
IC3 1 1 1 1

Product IP1 1 1 1 1
IP2 1 1 1 1

5.0 5.0 5.0 5.0
(100%) (100%) (100%) (100%)

Points 28.41 24.21 27.05 18.16
Normalized Score 63.85% 58.52% 76.75% 46.77%

Because the framework evaluates the solutions objectively and without a use case
context, a weighting by the developers is necessary. How this may look like can be
seen in table 5.3. This shows two exemplary cases, which reflect the requirements
within an imaginary project. In C1, a high priority is given to the existence of
functionalities and a high operability. The imaginary developer wants to cover the
complete VC lifecycle and issue ZKP-enabled VCs that can also be revoked. This
should be documented properly so that the project can be implemented as quickly
as possible. C2 prioritizes a high flexibility and low dependency. The imaginary
developer wants to split the functionalities to different agents, which have to run in
the cloud but also on a smartphone. In addition, all data such as VC and private
keys should be managed by the company or the person himself.

74 5 Evaluation Framework

Table 5.3: Exemplary weights

Case Functionality Flexibility Operability Dependency Involvement

C1 0.4 0.05 0.4 0.1 0.05
C2 0.2 0.3 0.1 0.3 0.1

When these weights are applied to the results from table 5.2, the scores for the cases
are as follows:

• C1: Mattr 77.95%, Trinsic 61.45%, Veramo 59.33%, Azure 43.7%.

• C2: Mattr 50.23%, Trinsic 47.39%, Veramo 81.54%, Azure 36.27%

Therefore, Mattr receives the most points at C1, while Veramo receives the most
at C2. This shows how the corresponding scores can change due to requirements
within a use case. This concludes the evaluation framework and its application to
the solutions. In the next section, these results are considered, and final conclusions
are drawn for the solutions.

5.3 Results
In the last section, all the results of the work so far were incorporated into the
final evaluation of four developer-oriented solutions in the SSI field. Looking at the
normalized scores, Veramo received the best result with 76.75%, followed by Mattr
with 63.85%, Trinsic with 58.52% and Azure with 43.78% in the last place. Figure
5.1 visualizes the obtained normalized scores.

Mattr Trinsic Veramo Azure
0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

Sc
or
e

Functionality
Flexbility
Operability
Dependency
Involvement

Figure 5.1: Normalized scores for solutions

Mattr stood out mainly because of its high scores in the areas of functionality,
operability, and involvement. This is also in line with the observations from the
implementation. Mattr is technologically ahead of its competitors in many areas

5.3 Results 75

because it uses current and standardized technologies, they often helped to develop.
The good documentation makes it easy for beginner but also experienced developers
to use and understand the Mattr platform. Nevertheless, the overall score is dragged
down by the high dependency and low flexibility in some areas. Accordingly, Mattr is
mainly suitable for developers who want to create production-ready products based
on the latest technologies in SSI and can accept the given limitations.

Trinsic manages to stay relatively close to Mattr and stands out with its excellent
operability, many supported programming languages and its commitment to the
community. Nevertheless, Trinsic is currently technologically limited and is less
flexible and restrictive than Mattr. Again, the platform nature creates a complete
dependency on the company. Trinsic is especially interesting for developers who
want to create prototypes quickly and might want to migrate them to a production
system that only includes the most basic functions of SSI.

In contrast, Veramo scores with its high flexibility, low dependencies and high
involvement in the space. As the only non-platform solution, it offers as an open and
extensible foundation, that gives developers a lot of freedom for their own ideas and
flows. This also means that they retain full control over the tech stack and the data
it contains. However, they are still limited in their basic functionality and nearly no
documentation if available. Veramo is therefore aimed at developers who appreciate
full control and flexibility and have no problem investing some of their own effort
and time. In its current state, it is difficult to recommend Veramo for production
systems.

With the lowest score, Microsoft’s solution stood out primarily because of its proximity
to their own technologies, such as Active Directory. Nevertheless, it is inferior to its
competitors in almost all other areas. This solution is therefore primarily aimed at
developers who are tied to a Microsoft stack and want to make their first attempts
with VCs.

At this point, however, there is no division into good or bad solutions. Although the
evaluation framework introduced an objective evaluation of the solutions, it must also
be placed in the context of a use case. In this context, the existing weaknesses can
be dealt with accordingly. The evaluation framework serves as a tool for developers,
which can be applied in the decision-making process. Nevertheless, it became clear
that there is still a lot to be done to support more standards and technologies.
Moreover, platform solutions like Mattr, Trinsic and Azure should work on enabling
more flexibility and decrease the dependency on them.

6 Conclusion

Self-sovereign Identity is a new approach towards digital identities. This thesis
gives an overview over existing developer-oriented SSI solutions and defines a new
approach to evaluate them. For this purpose, an evaluation framework based on
expert interviews, practical experience and the VC lifecycle was developed, which
enables an objective and structured evaluation of such solutions. At the same time,
this work closes a gap in the existing literature. With a few exceptions, the literature
has so far only focused on fundamental research and less on practical considerations
of existing solutions.

For the described artefacts, further research and an expert survey were used to create
an overview of various solutions on the market and their capabilities to cover the
VC lifecycle. A total of seven experts from the SSI space who work on standards,
open-source libraries and commercial solutions took part in a questionnaire and
generated input for chapters 3 and 5. The expert input helped improve the research
on 15 solutions across four categories (RQ1):

• Platforms: Mattr, Trinsic, Azure AD for VCs, Verity, Affinidi

• SDKs: Dock.io, aca.py, Jolocom

• Frameworks: Veramo

• Libraries: DIDKit, TangleID, Identity.com, vc.js, vc-js, verifiable-credentials-
java

Among them, the solutions Mattr and Trinsic received most of the recommendations
with 3 out of 7 votes in the questionnaire (RQ2).

In addition, a new developer-oriented evaluation framework based on expert opinions
and practical experience was developed. For this purpose, experts were asked about
important selection criteria for SSI solutions. Moreover, a reference implementation
integrating four of the solutions was developed and described. This resulted in the
five categories functionality, flexibility, operability, dependency, and involvement.
These in turn contain a total of 15 individual criteria, corresponding questions and
a scoring scheme for a practical evaluation. For the implemented solutions Mattr,
Trinsic, Veramo and Azure, Veramo received the highest score with 76.75% and
Azure the lowest with 43.78% without weighing the individual indexes. (RQ3)

In summary, this work is the first to describe a developer-oriented examination,
implementation, and evaluation of solutions in the SSI domain. With some solutions,

77

78 6 Conclusion

the concepts and technologies of SSI can already be integrated in a production-ready
manner, but the relatively young field and consequently the partially unfinished stan-
dards are still a hindrance for many solutions. In addition, it should be observed that
platform solutions do not create centralized data silos and unnecessary dependencies.
This would again create similar issues and situations that SSI was meant to solve.

Bibliography

[AL20] Marcos Allende López. Self-Sovereign Identity: The Future of Identity:
Self-Sovereignity, Digital Wallets, and Blockchain. Inter-American De-
velopment Bank, September 2020. URL: https://publications.iadb.
org/en/node/28786, doi:10.18235/0002635.

[All16] Christopher Allen. The Path to Self-Sovereign Identity, April 2016. URL:
http://www.lifewithalacrity.com/2016/04/the-path-to-self-
soverereign-identity.html.

[BC18] Oscar Borgogno and Giuseppe Colangelo. Data Sharing and Interop-
erability Through APIs: Insights from European Regulatory Strategy.
SSRN Electronic Journal, 2018. URL: https://www.ssrn.com/abstr
act=3288460, doi:10.2139/ssrn.3288460.

[BCHR+19] J. Bernal Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. Torres
Moreno, and A. Skarmeta. Privacy-Preserving Solutions for Blockchain:
Review and Challenges. IEEE Access, 7:164908–164940, 2019. Conference
Name: IEEE Access. doi:10.1109/ACCESS.2019.2950872.

[BLZ+20] Mohammed Amine Bouras, Qinghua Lu, Fan Zhang, Yueliang Wan, Tao
Zhang, and Huansheng Ning. Distributed Ledger Technology for eHealth
Identity Privacy: State of The Art and Future Perspective. Sensors,
20(2):483, January 2020. URL: https://www.mdpi.com/1424-8220/2
0/2/483, doi:10.3390/s20020483.

[Bor12] Detlef Borchers. Der Diginotar-SSL-Gau und seine Folgen, January 2012.
URL: https://www.heise.de/security/meldung/Der-Diginotar-SS
L-Gau-und-seine-Folgen-1423893.html.

[Bun20] Bundesdruckerei. So funktionieren digitale Identitäten, March 2020.
URL: https://www.bundesdruckerei.de/de/Themen-Trends/Magazi
n/Was-ist-eine-digitale-Identitaet.

[Cam05] Kim Cameron. The Laws of Identity, May 2005. URL: https://www.id
entityblog.com/?p=352.

[CK01] Sebastian Clauß and Marit Köhntopp. Identity management and its
support of multilateral security. Computer Networks, 37(2):205–219,
October 2001. URL: https://linkinghub.elsevier.com/retrieve/p
ii/S1389128601002171, doi:10.1016/S1389-1286(01)00217-1.

79

https://publications.iadb.org/en/node/28786
https://publications.iadb.org/en/node/28786
https://doi.org/10.18235/0002635
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://www.ssrn.com/abstract=3288460
https://www.ssrn.com/abstract=3288460
https://doi.org/10.2139/ssrn.3288460
https://doi.org/10.1109/ACCESS.2019.2950872
https://www.mdpi.com/1424-8220/20/2/483
https://www.mdpi.com/1424-8220/20/2/483
https://doi.org/10.3390/s20020483
https://www.heise.de/security/meldung/Der-Diginotar-SSL-Gau-und-seine-Folgen-1423893.html
https://www.heise.de/security/meldung/Der-Diginotar-SSL-Gau-und-seine-Folgen-1423893.html
https://www.bundesdruckerei.de/de/Themen-Trends/Magazin/Was-ist-eine-digitale-Identitaet
https://www.bundesdruckerei.de/de/Themen-Trends/Magazin/Was-ist-eine-digitale-Identitaet
https://www.identityblog.com/?p=352
https://www.identityblog.com/?p=352
https://linkinghub.elsevier.com/retrieve/pii/S1389128601002171
https://linkinghub.elsevier.com/retrieve/pii/S1389128601002171
https://doi.org/10.1016/S1389-1286(01)00217-1

Bibliography

[DGH+21] Matthew Davie, Dan Gisolfi, Daniel Hardman, John Jordan, Darrell
O’Donnell, Drummond Reed, and Oskar van Deventer. 0289: The Trust
Over IP Stack, May 2021. URL: https://github.com/hyperledger/a
ries-rfcs/blob/main/concepts/0289-toip-stack/README.md.

[Dig21] Digital Bazaar. vc-revocation-list-2020, May 2021. original-date: 2020-
04-21T21:56:17Z. URL: https://github.com/digitalbazaar/vc-re
vocation-list.

[DP18] Paul Dunphy and Fabien A.P. Petitcolas. A First Look at Identity
Management Schemes on the Blockchain. IEEE Security & Privacy,
16(4):20–29, July 2018. URL: https://ieeexplore.ieee.org/docume
nt/8425607/, doi:10.1109/MSP.2018.3111247.

[DT20] Omar Dib and Khalifa Toumi. Decentralized Identity Systems: Ar-
chitecture, Challenges, Solutions and Future Directions. Annals of
Emerging Technologies in Computing, 4(5):19–40, December 2020. URL:
http://aetic.theiaer.org/archive/v4/v4n5/p2.html, doi:
10.33166/AETiC.2020.05.002.

[ERMA21] Tobias Ehrlich, Daniel Richter, Michael Meisel, and Jürgen Anke. Self-
Sovereign Identity als Grundlage für universell einsetzbare digitale
Identitäten. HMD Praxis der Wirtschaftsinformatik, February 2021.
URL: http://link.springer.com/10.1365/s40702-021-00711-5,
doi:10.1365/s40702-021-00711-5.

[Eve21a] Evernym. Developer Resources, 2021. URL: https://www.evernym.co
m/developer-resources/.

[Eve21b] Evernym. verity-rest-api | 1.0 | evernym | SwaggerHub, 2021. URL: ht
tps://app.swaggerhub.com/apis/evernym/verity-rest-api/1.0.

[FCA19] Md Sadek Ferdous, Farida Chowdhury, and Madini O. Alassafi. In
Search of Self-Sovereign Identity Leveraging Blockchain Technology.
IEEE Access, 7:103059–103079, 2019. URL: https://ieeexplore.iee
e.org/document/8776589/, doi:10.1109/ACCESS.2019.2931173.

[Gam95] Erich Gamma, editor. Design patterns: elements of reusable object-
oriented software. Addison-Wesley professional computing series. Addison-
Wesley, Reading, Mass, 1995.

[GMM18] Andreas Grüner, Alexander Mühle, and Christoph Meinel. On the
Relevance of Blockchain in Identity Management. arXiv:1807.08136 [cs],
July 2018. arXiv: 1807.08136. URL: http://arxiv.org/abs/1807.081
36.

[Har18] Daniel Hardman. 0011: Credential Revocation, 2018. URL: https:
//github.com/hyperledger/indy-hipe.

https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0289-toip-stack/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0289-toip-stack/README.md
https://github.com/digitalbazaar/vc-revocation-list
https://github.com/digitalbazaar/vc-revocation-list
https://ieeexplore.ieee.org/document/8425607/
https://ieeexplore.ieee.org/document/8425607/
https://doi.org/10.1109/MSP.2018.3111247
http://aetic.theiaer.org/archive/v4/v4n5/p2.html
https://doi.org/10.33166/AETiC.2020.05.002
https://doi.org/10.33166/AETiC.2020.05.002
http://link.springer.com/10.1365/s40702-021-00711-5
https://doi.org/10.1365/s40702-021-00711-5
https://www.evernym.com/developer-resources/
https://www.evernym.com/developer-resources/
https://app.swaggerhub.com/apis/evernym/verity-rest-api/1.0
https://app.swaggerhub.com/apis/evernym/verity-rest-api/1.0
https://ieeexplore.ieee.org/document/8776589/
https://ieeexplore.ieee.org/document/8776589/
https://doi.org/10.1109/ACCESS.2019.2931173
http://arxiv.org/abs/1807.08136
http://arxiv.org/abs/1807.08136
https://github.com/hyperledger/indy-hipe
https://github.com/hyperledger/indy-hipe

Bibliography

[Har19] Daniel Hardman. Aries RFC 0005: DID Communication, November
2019. original-date: 2019-05-08T16:49:20Z. URL: https://github.com
/hyperledger/aries-rfcs/blob/08653f21a489bf4717b54e4d7fd2d
0bdfe6b4d1a/concepts/0005-didcomm/README.md.

[Har21] Daniel Hardman. DIDComm Messaging Specification, 2021. URL:
https://identity.foundation/didcomm-messaging/spec/#purpose
-and-scope.

[Hec20] Rouven Heck. SSI Architecture Stack, 2020. URL: https://github.c
om/decentralized-identity/decentralized-identity.github.io
/blob/master/assets/ssi-architectural-stack--and--communit
y-efforts-overview.pdf.

[Hel20a] Nader Helmy. JWT vs Linked Data Proofs: comparing VC assertion
formats, August 2020. URL: https://medium.com/mattr-global/jw
t-vs-linked-data-proofs-comparing-vc-assertion-formats-a2a
4e6671d57.

[Hel20b] Nader Helmy. A solution for privacy-preserving verifiable credentials,
August 2020. URL: https://medium.com/mattr-global/a-solution
-for-privacy-preserving-verifiable-credentials-f1650aa1609
3.

[Hev07] Alan R Hevner. A Three Cycle View of Design Science Research. 19:7,
2007.

[Hol21] Jesse Hollington. In a Surprising Twist, Apple Just Launched a Tool to
Transfer iCloud Photos to Google Photos (But There’s a Catch), March
2021. Section: News. URL: https://www.idropnews.com/news/in-a-
surprising-twist-apple-just-launched-a-tool-to-transfer-ic
loud-photos-to-google-photos-but-theres-a-catch/153563/.

[Hom20] Homeland Security. Preventing Forgery & Counterfeiting of Certificates
and Licenses – Phase 1 Interoperability Plug Fest Test Plan, May 2020.
URL: https://canada-ca.github.io/ucvdcc/docs/DHS.ST.SVIP-Ca
ll-Preventing-Forgery-Interop-Test-Plan-Phase-1.pdf.

[Hom21] Homeland Security. Interoperability Plugfest #2 – VC/DID Multi-
Platform/Multi-Vendor Interoperability Showcase/Demo, March 2021.
URL: https://docs.google.com/presentation/d/1MeeP7vDXb9CpSB
fjTybYbo8qJfrrbrXCSJa0DklNe2k/edit#slide=id.p1.

[HSS21] Lisa R. Horwitch, Dounia Saeme, and Heidi N. Saul. Proceedings of
the 32nd Internet Identity Workshop, 2021. URL: https://github.com
/windley/IIW_homepage/raw/gh-pages/assets/proceedings/IIW_3
2_Book_of_Proceedings_Final%20A%201.pdf.

https://github.com/hyperledger/aries-rfcs/blob/08653f21a489bf4717b54e4d7fd2d0bdfe6b4d1a/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/08653f21a489bf4717b54e4d7fd2d0bdfe6b4d1a/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/08653f21a489bf4717b54e4d7fd2d0bdfe6b4d1a/concepts/0005-didcomm/README.md
https://identity.foundation/didcomm-messaging/spec/#purpose-and-scope
https://identity.foundation/didcomm-messaging/spec/#purpose-and-scope
https://github.com/decentralized-identity/decentralized-identity.github.io/blob/master/assets/ssi-architectural-stack--and--community-efforts-overview.pdf
https://github.com/decentralized-identity/decentralized-identity.github.io/blob/master/assets/ssi-architectural-stack--and--community-efforts-overview.pdf
https://github.com/decentralized-identity/decentralized-identity.github.io/blob/master/assets/ssi-architectural-stack--and--community-efforts-overview.pdf
https://github.com/decentralized-identity/decentralized-identity.github.io/blob/master/assets/ssi-architectural-stack--and--community-efforts-overview.pdf
https://medium.com/mattr-global/jwt-vs-linked-data-proofs-comparing-vc-assertion-formats-a2a4e6671d57
https://medium.com/mattr-global/jwt-vs-linked-data-proofs-comparing-vc-assertion-formats-a2a4e6671d57
https://medium.com/mattr-global/jwt-vs-linked-data-proofs-comparing-vc-assertion-formats-a2a4e6671d57
https://medium.com/mattr-global/a-solution-for-privacy-preserving-verifiable-credentials-f1650aa16093
https://medium.com/mattr-global/a-solution-for-privacy-preserving-verifiable-credentials-f1650aa16093
https://medium.com/mattr-global/a-solution-for-privacy-preserving-verifiable-credentials-f1650aa16093
https://www.idropnews.com/news/in-a-surprising-twist-apple-just-launched-a-tool-to-transfer-icloud-photos-to-google-photos-but-theres-a-catch/153563/
https://www.idropnews.com/news/in-a-surprising-twist-apple-just-launched-a-tool-to-transfer-icloud-photos-to-google-photos-but-theres-a-catch/153563/
https://www.idropnews.com/news/in-a-surprising-twist-apple-just-launched-a-tool-to-transfer-icloud-photos-to-google-photos-but-theres-a-catch/153563/
https://canada-ca.github.io/ucvdcc/docs/DHS.ST.SVIP-Call-Preventing-Forgery-Interop-Test-Plan-Phase-1.pdf
https://canada-ca.github.io/ucvdcc/docs/DHS.ST.SVIP-Call-Preventing-Forgery-Interop-Test-Plan-Phase-1.pdf
https://docs.google.com/presentation/d/1MeeP7vDXb9CpSBfjTybYbo8qJfrrbrXCSJa0DklNe2k/edit#slide=id.p1
https://docs.google.com/presentation/d/1MeeP7vDXb9CpSBfjTybYbo8qJfrrbrXCSJa0DklNe2k/edit#slide=id.p1
https://github.com/windley/IIW_homepage/raw/gh-pages/assets/proceedings/IIW_32_Book_of_Proceedings_Final%20A%201.pdf
https://github.com/windley/IIW_homepage/raw/gh-pages/assets/proceedings/IIW_32_Book_of_Proceedings_Final%20A%201.pdf
https://github.com/windley/IIW_homepage/raw/gh-pages/assets/proceedings/IIW_32_Book_of_Proceedings_Final%20A%201.pdf

Bibliography

[Hub14] Hub Culture. HubID First to Deploy Windhover Principles and Frame-
work for Digital Identity, Trust and Open Data, October 2014. URL:
https://hubculture.com/hubs/47/news/689/.

[Hyp18] Hyperledger. How Credential Revocation Works — Hyperledger Indy
SDK documentation, 2018. URL: https://hyperledger-indy.readt
hedocs.io/projects/sdk/en/latest/docs/concepts/revocation/
cred-revocation.html#how-revocation-will-be-tested.

[Idc14] Idcubed.org. The Windhover Principles for Digital Identity, Trust, and
Data, November 2014. URL: https://web.archive.org/web/201707
07035858/https://idcubed.org/home_page_feature/windhover-p
rinciples-digital-identity-trust-data/.

[IIW21] IIW contributors. IIW 32 Session Notes, May 2021. URL: https:
//iiw.idcommons.net/index.php?title=IIW_32_Session_Notes&o
ldid=23814.

[JHF03] Ken Jordan, Jan Hauser, and Steven Foster. The Augmented Social
Network: Building identity and trust into the next-generation Internet.
First Monday, 8(8), August 2003. URL: http://journals.uic.edu/o
js/index.php/fm/article/view/1068, doi:10.5210/fm.v8i8.1068.

[Joh20] Anil John. DHS SVIP Blockchain/DLT/SSI Cohort - Multi-Product
Phase 1 Interop Artifacts/ Scaffolding / Information, December 2020.
URL: https://lists.w3.org/Archives/Public/public-credential
s/2020Jun/0100.html.

[Joh21] Joseph Johnson. Internet users in the world 2021, July 2021. URL:
https://www.statista.com/statistics/617136/digital-populat
ion-worldwide/.

[KCE+15] Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and
Arvind Narayanan. An empirical study of Namecoin and lessons for
decentralized namespace design, 2015. URL: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.698.4605&rep=rep1&type=
pdf.

[Kop21] Laura Koppenhöfer. Kabinettsbeschluss: Handy-Personalausweis ab
September, October 2021. URL: https://www.tagesschau.de/inland
/personalausweis-elektronisch-101.html.

[Kre19] Stefan Krempl. E-Government-Studie: Bundesbürger nutzen Person-
alausweis mit eID kaum, October 2019. URL: https://www.heise.de
/newsticker/meldung/E-Government-Studie-Bundesbuerger-nutz
en-Personalausweis-mit-eID-kaum-4557779.html.

https://hubculture.com/hubs/47/news/689/
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/concepts/revocation/cred-revocation.html#how-revocation-will-be-tested
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/concepts/revocation/cred-revocation.html#how-revocation-will-be-tested
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/concepts/revocation/cred-revocation.html#how-revocation-will-be-tested
https://web.archive.org/web/20170707035858/https://idcubed.org/home_page_feature/windhover-principles-digital-identity-trust-data/
https://web.archive.org/web/20170707035858/https://idcubed.org/home_page_feature/windhover-principles-digital-identity-trust-data/
https://web.archive.org/web/20170707035858/https://idcubed.org/home_page_feature/windhover-principles-digital-identity-trust-data/
https://iiw.idcommons.net/index.php?title=IIW_32_Session_Notes&oldid=23814
https://iiw.idcommons.net/index.php?title=IIW_32_Session_Notes&oldid=23814
https://iiw.idcommons.net/index.php?title=IIW_32_Session_Notes&oldid=23814
http://journals.uic.edu/ojs/index.php/fm/article/view/1068
http://journals.uic.edu/ojs/index.php/fm/article/view/1068
https://doi.org/10.5210/fm.v8i8.1068
https://lists.w3.org/Archives/Public/public-credentials/2020Jun/0100.html
https://lists.w3.org/Archives/Public/public-credentials/2020Jun/0100.html
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.4605&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.4605&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.4605&rep=rep1&type=pdf
https://www.tagesschau.de/inland/personalausweis-elektronisch-101.html
https://www.tagesschau.de/inland/personalausweis-elektronisch-101.html
https://www.heise.de/newsticker/meldung/E-Government-Studie-Bundesbuerger-nutzen-Personalausweis-mit-eID-kaum-4557779.html
https://www.heise.de/newsticker/meldung/E-Government-Studie-Bundesbuerger-nutzen-Personalausweis-mit-eID-kaum-4557779.html
https://www.heise.de/newsticker/meldung/E-Government-Studie-Bundesbuerger-nutzen-Personalausweis-mit-eID-kaum-4557779.html

Bibliography

[Kup20] Michael Kuperberg. Blockchain-Based Identity Management: A Survey
From the Enterprise and Ecosystem Perspective. IEEE Transactions
on Engineering Management, 67(4):1008–1027, November 2020. URL:
https://ieeexplore.ieee.org/document/8792372/, doi:10.1109/
TEM.2019.2926471.

[LHO+20] Yang Liu, Debiao He, Mohammad S. Obaidat, Neeraj Kumar, Muham-
mad Khurram Khan, and Kim-Kwang Raymond Choo. Blockchain-
based identity management systems: A review. Journal of Network
and Computer Applications, 166, September 2020. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S1084804520302058,
doi:10.1016/j.jnca.2020.102731.

[Lom20] Natasha Lomas. Facebook’s photo porting tool adds support for Dropbox
and Koofr, March 2020. URL: https://social.techcrunch.com/2020
/09/03/facebooks-photo-porting-tool-adds-support-for-dropb
ox-and-koofr/.

[LS21a] Dave Longley and Manu Sporny. Revocation List 2020, April 2021. URL:
https://w3c-ccg.github.io/vc-status-rl-2020/.

[LS21b] Tobias Looker and Orie Steele. BBS+ Signatures 2020, June 2021. URL:
https://w3c-ccg.github.io/ldp-bbs2020/.

[Mar12] Moxie Marlinspike. What is "Sovereign Source Authority"?, February
2012. URL: https://www.moxytongue.com/2012/02/what-is-sover
eign-source-authority.html.

[MAT20a] MATTR. Adding support for revocation of Verifiable Credentials, Oc-
tober 2020. URL: https://mattr.global/adding-support-for-revo
cation-of-verifiable-credentials/.

[MAT20b] MATTR. Intro to ZKPs using BBS+ signatures, July 2020. URL:
https://www.youtube.com/watch?v=hXxQqQLBVZ8.

[MAT21a] MATTR. Approach - Open Source & Interoperable Digital Trust |
MATTR, 2021. URL: https://mattr.global/approach/.

[MAT21b] MATTR. MATTR, 2021. URL: https://github.com/mattrglobal.

[MAT21c] MATTR. MATTR - YouTube, 2021. URL: https://www.youtube.co
m/c/MATTRglobal/videos.

[MAT21d] MATTR. MATTR | Restoring Trust in Digital Interactions with Decen-
tralized Identity, 2021. URL: https://mattr.global/.

[MAT21e] MATTR. MATTR Learn | Docs & API References – Decentralized
Identity, 2021. URL: https://learn.mattr.global/.

https://ieeexplore.ieee.org/document/8792372/
https://doi.org/10.1109/TEM.2019.2926471
https://doi.org/10.1109/TEM.2019.2926471
https://linkinghub.elsevier.com/retrieve/pii/S1084804520302058
https://linkinghub.elsevier.com/retrieve/pii/S1084804520302058
https://doi.org/10.1016/j.jnca.2020.102731
https://social.techcrunch.com/2020/09/03/facebooks-photo-porting-tool-adds-support-for-dropbox-and-koofr/
https://social.techcrunch.com/2020/09/03/facebooks-photo-porting-tool-adds-support-for-dropbox-and-koofr/
https://social.techcrunch.com/2020/09/03/facebooks-photo-porting-tool-adds-support-for-dropbox-and-koofr/
https://w3c-ccg.github.io/vc-status-rl-2020/
https://w3c-ccg.github.io/ldp-bbs2020/
https://www.moxytongue.com/2012/02/what-is-sovereign-source-authority.html
https://www.moxytongue.com/2012/02/what-is-sovereign-source-authority.html
https://mattr.global/adding-support-for-revocation-of-verifiable-credentials/
https://mattr.global/adding-support-for-revocation-of-verifiable-credentials/
https://www.youtube.com/watch?v=hXxQqQLBVZ8
https://mattr.global/approach/
https://github.com/mattrglobal
https://www.youtube.com/c/MATTRglobal/videos
https://www.youtube.com/c/MATTRglobal/videos
https://mattr.global/
https://learn.mattr.global/

Bibliography

[MAT21f] MATTR. MATTR Uses A Pay-As-You-Go Pricing Model | MATTR
Learn, 2021. URL: https://learn.mattr.global/docs/platform/p
ricing/overview.

[MAT21g] MATTR. MATTR VII Platform Overview | MATTR Learn, 2021. URL:
https://learn.mattr.global/docs/platform/platform-overview.

[MAT21h] MATTR. Privacy Policy | MATTR Learn, July 2021. URL: https:
//learn.mattr.global/docs/terms/website-privacy-policy.

[MAT21i] MATTR. Products - Decentralized Identity Solution | MATTR, 2021.
URL: https://mattr.global/products/.

[MAT21j] MATTR. Resources - Articles and Core Concepts about Decentralized
Identity | MATTR, 2021. URL: https://mattr.global/resources/.

[MAT21k] MATTR. Supported Standards - Core Standards Supported | MATTR
Learn, 2021. URL: https://learn.mattr.global/docs/platform/s
upported-standards.

[MAT21l] MATTR. Upcoming Standards - Open Standards On Our Roadmap |
MATTR Learn, 2021. URL: https://learn.mattr.global/docs/pl
atform/upcoming-standards.

[MAT21m] MATTR. VII Core - Component Overview | MATTR Learn, 2021. URL:
https://learn.mattr.global/docs/platform/core/overview.

[MAT21n] MATTR. VII Core - DIDs (Decentralized Identifiers) | MATTR Learn,
2021. URL: https://learn.mattr.global/docs/platform/core/di
ds/overview.

[MAT21o] MATTR. VII Drivers - Pluggable & Future-proof Integrations | MATTR
Learn, 2021. URL: https://learn.mattr.global/docs/platform/d
rivers.

[MAT21p] MATTR. VII Extensions - Pre-Built Extensions | MATTR Learn, 2021.
URL: https://learn.mattr.global/docs/platform/extensions/ov
erview.

[MG20] Christoph Meinel and Tatiana Gayvoronskaya. Blockchain: Hype oder
Innovation. Springer Berlin Heidelberg, Berlin, Heidelberg, 2020. URL:
http://link.springer.com/10.1007/978-3-662-61916-2, doi:
10.1007/978-3-662-61916-2.

[Mic21] Microsoft. Identitätsnachweis-Lösungen – Microsoft Security, 2021. URL:
https://www.microsoft.com/de-de/security/business/identity
-access-management/verifiable-credentials.

https://learn.mattr.global/docs/platform/pricing/overview
https://learn.mattr.global/docs/platform/pricing/overview
https://learn.mattr.global/docs/platform/platform-overview
https://learn.mattr.global/docs/terms/website-privacy-policy
https://learn.mattr.global/docs/terms/website-privacy-policy
https://mattr.global/products/
https://mattr.global/resources/
https://learn.mattr.global/docs/platform/supported-standards
https://learn.mattr.global/docs/platform/supported-standards
https://learn.mattr.global/docs/platform/upcoming-standards
https://learn.mattr.global/docs/platform/upcoming-standards
https://learn.mattr.global/docs/platform/core/overview
https://learn.mattr.global/docs/platform/core/dids/overview
https://learn.mattr.global/docs/platform/core/dids/overview
https://learn.mattr.global/docs/platform/drivers
https://learn.mattr.global/docs/platform/drivers
https://learn.mattr.global/docs/platform/extensions/overview
https://learn.mattr.global/docs/platform/extensions/overview
http://link.springer.com/10.1007/978-3-662-61916-2
https://doi.org/10.1007/978-3-662-61916-2
https://doi.org/10.1007/978-3-662-61916-2
https://www.microsoft.com/de-de/security/business/identity-access-management/verifiable-credentials
https://www.microsoft.com/de-de/security/business/identity-access-management/verifiable-credentials

Bibliography

[Min20] Jens Minor. Google Fotos: Praktisches Export-Werkzeug - so lassen sich
alle Facebook-Fotos & Videos zu Google übertragen - GWB, December
2020. URL: https://www.googlewatchblog.de/2020/12/google-fo
tos-praktisches-export/.

[MZSA21] Peter Mayer, Yixin Zou, Florian Schaub, and Adam J Aviv. “Now I’m a
bit angry:” Individuals’ Awareness, Perception, and Responses to Data
Breaches that Affected Them. USENIX Security Symposium, 30:18, 2021.
URL: https://www.usenix.org/conference/usenixsecurity21/pre
sentation/mayer.

[NJ20] Nitin Naik and Paul Jenkins. uPort Open-Source Identity Management
System: An Assessment of Self-Sovereign Identity and User-Centric Data
Platform Built on Blockchain. In 2020 IEEE International Symposium on
Systems Engineering (ISSE), pages 1–7, Vienna, Austria, October 2020.
IEEE. URL: https://ieeexplore.ieee.org/document/9272223/,
doi:10.1109/ISSE49799.2020.9272223.

[Noo21] Poppy Noor. Should we celebrate Trump’s Twitter ban? Five free
speech experts weigh in, January 2021. Section: US news. URL: http:
//www.theguardian.com/us-news/2021/jan/17/trump-twitter-ba
n-five-free-speech-experts-weigh-in.

[NQ21] Barclay Neira and Caleb Queern. Introduction to Azure Active Directory
Verifiable Credentials (preview), January 2021. URL: https://docs.m
icrosoft.com/en-us/azure/active-directory/verifiable-crede
ntials/decentralized-identifier-overview.

[Ope21a] OpenJS Foundation. About Node.js, 2021. URL: https://nodejs.org
/en/about/.

[Ope21b] OpenJS Foundation. Express - Node.js web application framework, 2021.
URL: https://expressjs.com/.

[OR20] Sean Oesch and Scott Ruoti. That Was Then, This Is Now: A Security
Evaluation of Password Generation, Storage, and Autofill in Browser-
Based Password Managers. In USENIX Security Symposium, pages
2165–2182, 2020.

[Orm21] Tavis Ormandy. Password Managers., June 2021. URL: https://lock
.cmpxchg8b.com/passmgrs.html?s=09.

[PR21] Alex Preukschat and Drummond Reed. Self-Sovereign Identity: Decen-
tralized digital identity and verifiable credentials. Manning, 1 edition,
May 2021. URL: https://www.manning.com/books/self-sovereign
-identity.

https://www.googlewatchblog.de/2020/12/google-fotos-praktisches-export/
https://www.googlewatchblog.de/2020/12/google-fotos-praktisches-export/
https://www.usenix.org/conference/usenixsecurity21/presentation/mayer
https://www.usenix.org/conference/usenixsecurity21/presentation/mayer
https://ieeexplore.ieee.org/document/9272223/
https://doi.org/10.1109/ISSE49799.2020.9272223
http://www.theguardian.com/us-news/2021/jan/17/trump-twitter-ban-five-free-speech-experts-weigh-in
http://www.theguardian.com/us-news/2021/jan/17/trump-twitter-ban-five-free-speech-experts-weigh-in
http://www.theguardian.com/us-news/2021/jan/17/trump-twitter-ban-five-free-speech-experts-weigh-in
https://docs.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://docs.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://docs.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://expressjs.com/
https://lock.cmpxchg8b.com/passmgrs.html?s=09
https://lock.cmpxchg8b.com/passmgrs.html?s=09
https://www.manning.com/books/self-sovereign-identity
https://www.manning.com/books/self-sovereign-identity

Bibliography

[Rie21] Martin Riedel. Generalized Verification API in Veramo Core #375,
August 2021. URL: https://github.com/uport-project/veramo.

[Ril21] Riley Hughes. Announcing Trinsic’s Largest Platform Update Ever, July
2021. URL: https://trinsic.id/announcing-trinsics-largest-p
latform-update-ever/.

[Ris21] Risk Based Security. Data Breach QuickView - June 2021, July 2021.
Section: Featured. URL: https://www.riskbasedsecurity.com/2021
/07/14/data-breach-quickview-june-2021/.

[Sim21] Alex Simons. Announcing Azure AD Verifiable Credentials, April 2021.
Section: Azure Active Directory Identity Blog. URL: https://techco
mmunity.microsoft.com/t5/azure-active-directory-identity/a
nnouncing-azure-ad-verifiable-credentials/ba-p/1994711.

[SLC19] Manu Sporny, Dave Longley, and David Chadwick. Verifiable Credentials
Data Model 1.0, November 2019. URL: https://www.w3.org/TR/vc-d
ata-model/.

[SLS+21] Manu Sporny, Dave Longley, Markus Sabadello, Drummond Reed, Orie
Steele, and Christopher Allen. Decentralized Identifiers (DIDs) v1.0,
March 2021. URL: https://www.w3.org/TR/did-core/.

[SNA21] Reza Soltani, Uyen Trang Nguyen, and Aijun An. A Survey of Self-
Sovereign Identity Ecosystem. Security and Communication Networks,
2021:1–26, July 2021. URL: https://www.hindawi.com/journals/scn
/2021/8873429/, doi:10.1155/2021/8873429.

[SNE20] Abylay Satybaldy, Mariusz Nowostawski, and Jørgen Ellingsen. Self-
Sovereign Identity Systems: Evaluation Framework. In Michael Friede-
wald, Melek Önen, Eva Lievens, Stephan Krenn, and Samuel Fricker,
editors, Privacy and Identity Management. Data for Better Living: AI
and Privacy, volume 576, pages 447–461. Springer International Pub-
lishing, Cham, 2020. Series Title: IFIP Advances in Information and
Communication Technology. URL: http://link.springer.com/10.1
007/978-3-030-42504-3_28, doi:10.1007/978-3-030-42504-3_28.

[Ste17] Amber Steel. LastPass Reveals 8 Truths about Passwords in the New
Password Exposé, November 2017. URL: https://blog.lastpass.co
m/2017/11/lastpass-reveals-8-truths-about-passwords-in-the
-new-password-expose/.

[SUG+21] Jens Strüker, Nils Urbach, Tobias Guggenberger, Jonathan Lauten-
schlager, Nicolas Ruhland, Johannes Sedlmeir, Jens-Christian Stoetzer,
and Fabiane Völter. Grundlagen, Anwendungen und Potenziale portabler
digitaler Identitäten. June 2021. URL: https://eref.uni-bayreuth.
de/id/eprint/66090.

https://github.com/uport-project/veramo
https://trinsic.id/announcing-trinsics-largest-platform-update-ever/
https://trinsic.id/announcing-trinsics-largest-platform-update-ever/
https://www.riskbasedsecurity.com/2021/07/14/data-breach-quickview-june-2021/
https://www.riskbasedsecurity.com/2021/07/14/data-breach-quickview-june-2021/
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/announcing-azure-ad-verifiable-credentials/ba-p/1994711
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/announcing-azure-ad-verifiable-credentials/ba-p/1994711
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/announcing-azure-ad-verifiable-credentials/ba-p/1994711
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/did-core/
https://www.hindawi.com/journals/scn/2021/8873429/
https://www.hindawi.com/journals/scn/2021/8873429/
https://doi.org/10.1155/2021/8873429
http://link.springer.com/10.1007/978-3-030-42504-3_28
http://link.springer.com/10.1007/978-3-030-42504-3_28
https://doi.org/10.1007/978-3-030-42504-3_28
https://blog.lastpass.com/2017/11/lastpass-reveals-8-truths-about-passwords-in-the-new-password-expose/
https://blog.lastpass.com/2017/11/lastpass-reveals-8-truths-about-passwords-in-the-new-password-expose/
https://blog.lastpass.com/2017/11/lastpass-reveals-8-truths-about-passwords-in-the-new-password-expose/
https://eref.uni-bayreuth.de/id/eprint/66090
https://eref.uni-bayreuth.de/id/eprint/66090

Bibliography

[Swi21] Dan Swinhoe. The 15 biggest data breaches of the 21st century, January
2021. URL: https://www.csoonline.com/article/2130877/the-bi
ggest-data-breaches-of-the-21st-century.html.

[TCSL21] Oliver Terbu, Stephen Curran, and von Gohren Edwin Snorre Lothar.
Tracking library polooza, September 2021. URL: https://docs.googl
e.com/document/d/1wWl442DQK0dHhtL8HHsbdtbpMxRL-_mjCPpb3RDQo
3M/edit?usp=embed_facebook.

[Tot21] Marek Toth. You should turn off autofill in your password manager |
Marek Tóth, July 2021. URL: https://marektoth.com/blog/passwor
d-managers-autofill/.

[Tri21a] Trinsic. Identity Wallets, 2021. URL: https://trinsic.id/identity-
wallets/.

[Tri21b] Trinsic. Introduction, 2021. URL: https://docs.trinsic.id/docs/i
ntroduction.

[Tri21c] Trinsic. Open Source, 2021. URL: https://docs.trinsic.id/docs/o
pen-source-involvement.

[Tri21d] Trinsic. Pricing, 2021. URL: https://trinsic.id/pricing/.

[Tri21e] Trinsic. Service Clients (SDKs), 2021. URL: https://docs.trinsic.i
d/docs/service-clients-sdks.

[Tri21f] Trinsic. Trinsic - A full-stack self-sovereign identity (SSI) platform, 2021.
URL: https://trinsic.id/.

[Tri21g] Trinsic. Trinsic Core - Trinsic, 2021. URL: https://trinsic.id/tri
nsic-core/.

[Tri21h] Trinsic. Trinsic Ecosystems, 2021. URL: https://trinsic.id/trins
ic-ecosystems/.

[Tri21i] Trinsic. Trinsic Studio, 2021. URL: https://trinsic.id/trinsic-s
tudio/.

[TRWF17] Andrew Tobin, Drummond Reed, Foreword Phillip J Windley, and Sovrin
Foundation. The Inevitable Rise of Self-Sovereign Identity. page 24,
2017.

[uPo21a] uPort. uPort, 2021. URL: https://www.uport.me/.

[uPo21b] uPort. Veramo: uPort’s Open Source Evolution, May 2021. URL:
https://medium.com/uport/veramo-uports-open-source-evoluti
on-d85fa463db1f.

https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://docs.google.com/document/d/1wWl442DQK0dHhtL8HHsbdtbpMxRL-_mjCPpb3RDQo3M/edit?usp=embed_facebook
https://docs.google.com/document/d/1wWl442DQK0dHhtL8HHsbdtbpMxRL-_mjCPpb3RDQo3M/edit?usp=embed_facebook
https://docs.google.com/document/d/1wWl442DQK0dHhtL8HHsbdtbpMxRL-_mjCPpb3RDQo3M/edit?usp=embed_facebook
https://marektoth.com/blog/password-managers-autofill/
https://marektoth.com/blog/password-managers-autofill/
https://trinsic.id/identity-wallets/
https://trinsic.id/identity-wallets/
https://docs.trinsic.id/docs/introduction
https://docs.trinsic.id/docs/introduction
https://docs.trinsic.id/docs/open-source-involvement
https://docs.trinsic.id/docs/open-source-involvement
https://trinsic.id/pricing/
https://docs.trinsic.id/docs/service-clients-sdks
https://docs.trinsic.id/docs/service-clients-sdks
https://trinsic.id/
https://trinsic.id/trinsic-core/
https://trinsic.id/trinsic-core/
https://trinsic.id/trinsic-ecosystems/
https://trinsic.id/trinsic-ecosystems/
https://trinsic.id/trinsic-studio/
https://trinsic.id/trinsic-studio/
https://www.uport.me/
https://medium.com/uport/veramo-uports-open-source-evolution-d85fa463db1f
https://medium.com/uport/veramo-uports-open-source-evolution-d85fa463db1f

Bibliography

[VBHK+19] Dirk Van Bokkem, Rico Hageman, Gijs Koning, Luat Nguyen, and Naqib
Zarin. Self-Sovereign Identity Solutions: The Necessity of Blockchain
Technology. arXiv:1904.12816 [cs], April 2019. arXiv: 1904.12816. URL:
http://arxiv.org/abs/1904.12816.

[Ver21a] Veramo. Blog | Performant and modular APIs for Verifiable Data and
SSI, 2021. URL: https://veramo.io/blog.

[Ver21b] Veramo. uport-project/veramo-plugin, September 2021. original-date:
2020-11-19T16:13:43Z. URL: https://github.com/uport-project/v
eramo-plugin.

[Ver21c] Veramo. Veramo - A JavaScript Framework for Verifiable Data | Per-
formant and modular APIs for Verifiable Data and SSI, 2021. URL:
https://veramo.io/.

[Ver21d] Veramo. Veramo Agent | Performant and modular APIs for Verifiable
Data and SSI, 2021. URL: https://veramo.io/docs/veramo_agent/i
ntroduction.

[WH07] Thomas Wilde and Thomas Hess. Forschungsmethoden der Wirtschaftsin-
formatik. page 8, 2007.

[WO01] Zooko Wilcox-O’Hearn. Names: Distributed, Secure, Human-Readable:
Choose Two, October 2001. URL: https://web.archive.org/web/20
011020191610/http://zooko.com/distnames.html.

[Wor17] World Bank. 1.1 Billion ‘Invisible’ People without ID are Priority for new
High Level Advisory Council on Identification for Development, 2017.
URL: https://www.worldbank.org/en/news/press-release/2017/1
0/12/11-billion-invisible-people-without-id-are-priority-f
or-new-high-level-advisory-council-on-identification-for-d
evelopment.

[Wor21a] World Wide Web Consortium Credentials Community Group. VC HTTP
API, August 2021. URL: https://github.com/w3c-ccg/vc-http-api.

[Wor21b] World Wide Web Consortium Credentials Community Group. Verifiable
Credentials HTTP API v0.3, July 2021. URL: https://w3c-ccg.gith
ub.io/vc-http-api/.

[Yeg21] Konstantin Yegupov. The demo app’s SDK usage does not match the
SDK types #38, June 2021. URL: https://github.com/Azure-Sampl
es/active-directory-verifiable-credentials/issues/38.

[Yil21] Hakan Yildiz. Layers of SSI Interoperability, January 2021. URL:
https://github.com/decentralized-identity/interoperability
/blob/master/assets/interop-mapping-version-by-Hakan-Yildi
z(TUB).pdf.

http://arxiv.org/abs/1904.12816
https://veramo.io/blog
https://github.com/uport-project/veramo-plugin
https://github.com/uport-project/veramo-plugin
https://veramo.io/
https://veramo.io/docs/veramo_agent/introduction
https://veramo.io/docs/veramo_agent/introduction
https://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
https://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
https://www.worldbank.org/en/news/press-release/2017/10/12/11-billion-invisible-people-without-id-are-priority-for-new-high-level-advisory-council-on-identification-for-development
https://www.worldbank.org/en/news/press-release/2017/10/12/11-billion-invisible-people-without-id-are-priority-for-new-high-level-advisory-council-on-identification-for-development
https://www.worldbank.org/en/news/press-release/2017/10/12/11-billion-invisible-people-without-id-are-priority-for-new-high-level-advisory-council-on-identification-for-development
https://www.worldbank.org/en/news/press-release/2017/10/12/11-billion-invisible-people-without-id-are-priority-for-new-high-level-advisory-council-on-identification-for-development
https://github.com/w3c-ccg/vc-http-api
https://w3c-ccg.github.io/vc-http-api/
https://w3c-ccg.github.io/vc-http-api/
https://github.com/Azure-Samples/active-directory-verifiable-credentials/issues/38
https://github.com/Azure-Samples/active-directory-verifiable-credentials/issues/38
https://github.com/decentralized-identity/interoperability/blob/master/assets/interop-mapping-version-by-Hakan-Yildiz(TUB).pdf
https://github.com/decentralized-identity/interoperability/blob/master/assets/interop-mapping-version-by-Hakan-Yildiz(TUB).pdf
https://github.com/decentralized-identity/interoperability/blob/master/assets/interop-mapping-version-by-Hakan-Yildiz(TUB).pdf

Bibliography

[You21] Kaliya Young. Verifiable Credentials Flavors Explained. page 21, 2021.

[Zam20] Frank Zammetti. Modern Full-Stack Development: Using TypeScript,
React, Node.js, Webpack, and Docker. Apress, Berkeley, CA, 2020.
URL: http://link.springer.com/10.1007/978-1-4842-5738-8,
doi:10.1007/978-1-4842-5738-8.

[Zun21] Brent Zundel. Why the Verifiable Credentials Community Should Con-
verge on BBS+, March 2021. Section: Thought Leadership. URL:
https://www.evernym.com/blog/bbs-verifiable-credentials/.

http://link.springer.com/10.1007/978-1-4842-5738-8
https://doi.org/10.1007/978-1-4842-5738-8
https://www.evernym.com/blog/bbs-verifiable-credentials/

Appendix

A Conversation with Orie Steele
From: Orie Steele
To: Philipp Bolte

1. What is your job title? (Developer, Researcher, ...)
CTO of a Verifiable Credentials and Decentralized Identifiers as a
service company.

2. Are you currently working on anything SSI-related?
> Applications of VCs and DIDs to physical and software supply chain.

3.What fascinates you about SSI?
> Applications of cryptography that enable better control of digital
space for both humans and machines / companies.

4. What value would you attribute to the experience of a developer
concerning its available toolset for the successful implementation of
SSI products?
> Reinventing the wheel / building on non standard or draft level
crypto is a major barrier to adoption.

5. Looking at the spreadsheet, what additions or changes would you
make?
You need some measure of interoperability, for example, store and
transfer may be only limited to certain credential formats.

6. If you were a developer at a company looking to integrate
Verifiable Credentials into their products, which three solutions
would you look at and why?
> I'm biased, but I like the approach transmute, trinsic and didkit
are taking, building APIs that can be proved interoperable from the
start.

7. Which ones wouldn't you use and why?

91

Appendix

> Too early to not look at any of them, but I would object to any
that claimed that only 1 format or one protocol was going to work for
everything...
which historically Microsoft and Evernym have associated with... but
both are changing.

8. What do you consider essential criteria for selecting a good SSI
solution for implementing Verifiable Credentials?
> Proven interoperability and portability. Open contribution to
standards.

9. What do you think are common problems existing SSI solutions for
developers have?
> Over focus on crypto that is not well supported. Too much
attention on people, not enough attention on businesses and devices.

10. Is there something you still want to say?
> I would love to see the results of this, when you gather more
feedback.

OS

B Conversation with Martin Riedel

From: Martin Riedel
To: Philipp Bolte

Lieber Herr Bolte,

vielen Dank für Ihr Interesse und es freut mich, dass Sie IIW
verfolgt haben (ja aktuell leider nur remote...). Gerne beantworte
ich Ihre Fragen (siehe Inline).

Ich wünsche Ihnen alles Gute für Ihr weiteres Studium.
Martin Riedel

1. What is your job title? (Developer, Researcher, ...)
> I somehow self-assigned “Identity-Engineer” as a title. Not sure if
it will catch on though, since it might get confused with some
self-improvement business model :)

2. Are you currently working on anything SSI-related?

Appendix

> Yes, I work for Consensys, an Ethereum Software House. I’m
concentrating my work on Product Management and Development of
Veramo, as well as some R&D related topic like DID-method Scaling
(Developing a DID method based on ZK-Rollup Technology)

3. What fascinates you about SSI?
> As a German I’m naturally very conscious around privacy and
data-security in general. I often try to interpolate how the Internet
would look in X years if we keep going down the same road of online
monopolies ingesting and monetizing our personal data. (Answer: It’s
not good.) We need a perspective shift to keep and open and private
Internet and SSI is the single most important element to archive
this.

4. What value would you attribute to the experience of a developer
concerning its available toolset for the successful implementation of
SSI products?
> Implementing an identity-stack end to end is a hard problem and
there are numerous pitfalls in doing so. That’s why I personally am
supportive of SDKs and frameworks that abstract most of the technical
complications from a developer. Veramo is one of those, but there are
numerous others. Even purpose-build SSI frameworks need to rely on
fundamental crypto-libraries in order to provide secure signing,
verification, encryption and proofing capabilities. Since any single
mistake can threaten the privacy and sovereign aspects of an SSI
ecosystem it is very important to rely on well-tested base frameworks
and libraries.

5. Looking at the spreadsheet, what additions or changes would you
make?
- Credential Status Check do not necessarly make it “home” to the
issuer. “Phone-home problem”. That what ZKP-based Proofs (e.g. using
Accumulators on a Blockchain) try to solve.
- In Regard to Veramo:

- Veramo offers a Datastore Layer Interface to store and
retrieve. DIDComm Messages, unwrapped Verifiable
Presentation, unwrapped Verifiable Credentials
(https://github.com/uport-project/veramo/tree/next/packages/
data-store)
- Generally I would probably argue that Store and Delete of
SSI Data might not even be a core problem of the credentials
flows. (E.g. is data stored locally or in some kind of hosted
EDV service is up to the specific architecture design)

Appendix

6. If you were a developer at a company looking to integrate
Verifiable Credentials into their products, which three solutions
would you look at and why?
> Veramo, Aries (Go, AcaPy), Identity.com (Civic)

7. Which ones wouldn't you use and why?
> (Pure) Indy-based implementations / Anoncreds v1 (because of the
known limitations around their proving limitations and
non-conformant VC/VP structure)

8. What do you consider essential criteria for selecting a good SSI
solution for implementing Verifiable Credentials?
- Full interoperable Support of current DID-Core and VC specs
- Interoperable Showcases
- Language-support for the implementation of my choice
- Thought leadership of the creators in the space

9. What do you think are common problems existing SSI solutions for
developers have?
- Choosing the right framework while the community is still solving
interoperability showcases.
- Implementing a solution that protects the privacy of each
participant. (Even if SSI Framework X provides the perfect Hammer for
the problem, you can still very much use it in the wrong way).

10. Is there something you still want to say?
> Good to see that this space is getting traction in academia as
well! I hope the EU will the a leader in supporting (and also
funding) this technology to protect it’s citizens from big internet
data monopolies.

C Conversation with Riley Hughes
From: Riley Hughes
To: Philipp Bolte

Thanks Philipp. See answers inline.

Riley Hughes

1. What is your job title? (Developer, Researcher, ...)
> CEO, cofounder

Appendix

2. Are you currently working on anything SSI-related?
> Yes, we're an SSI platform

3. What fascinates you about SSI?
> It reduces transaction costs for people to engage w/ others &
access things they need

4. What value would you attribute to the experience of a developer
concerning its available toolset for the successful implementation of
SSI products?
> I'm not sure if I understand the question... but I can say that
developer experience is critical, not just for the implementors, but
also to get others in an ecosystem to adopt credentials, it needs to
be easy to implement.

5. Looking at the spreadsheet, what additions or changes would you
make?
> I don't see a spreadsheet

6. If you were a developer at a company looking to integrate
Verifiable Credentials into their products, which three solutions
would you look at and why?
> I would look at Trinsic #1 of course
:) after that, Mattr and Microsoft

7. Which ones wouldn't you use and why?
> I wouldn't use open source repos, because of the maintenance and
overhead of building and maintaining it in-house. I'd want to focus
on the product we're developing. I also wouldn't use tools from
companies focused on IAM, unless my SSI use case was strictly IAM, in
which case I'd only use these tools (IdRamp, esatus, etc)

8. What do you consider essential criteria for selecting a good SSI
solution for implementing Verifiable Credentials?
> How long will it take me to implement? And how long will it take
others in my ecosystem to implement? (e.g., if I'm a university, how
long will it take employers, HR providers, other universities, etc to
accept the creds I issue? If they're not accepted anywhere it's
pointless.)

9. What do you think are common problems existing SSI solutions for
developers have?

Appendix

> There is always a balance between being opinionated about
implementation to abstract away complexity, or exposing complexity to
be more flexible. It's challenging to strike a balance between those.

10. Is there something you still want to say?
> It's all about the ecosystem. No single company will implement SSI
just for themselves. That is why interop & ease of impl, etc are so
important.

From: Riley Hughes
To: Philipp Bolte

Just saw the spreadsheet. I would add trinsic is platform + SDK.
also, last I checked Evernym didn't support revocation, but maybe
you have more recent data than me. But revocation isn't all
created equally - privacy factors and scalability are important
considerations (ie, it might be better to support no revocation,
than support a scheme with bad privacy). Finally, for
transferability, i'm not sure what you mean, but you can see this
blog post and maybe it answers your quesiton:
https://trinsic.id/ssi-digital-wallet-portability/

From: Philipp Bolte
To: Riley Hughes

[...]
Thank you for bringing up the blog post. I attached
explanations from the w3c specs to the bottom of the
spreadsheet. And they say „A holder might transfer one or
more of its verifiable credentials to another holder.“ To me
it rather sounds like a transfer of VCs between subjects (no
presentation, verification) than portability, which is
important as well though. Or am I misunderstanding that?

Again, thank you very much and have a great week!

Philipp Bolte

From: Riley Hughes
To: Philipp Bolte

Appendix

We don't support transporting credentials from one
subject to another. The only way we would support that is
if it were auditable so you could tell the audit trail of
transfers, but that is not on the immediate roadmap for
anyone in the space that I'm aware of.

You have a great week as well :-)

Riley Hughes

D Conversation with Markus Sabadello

From: Markus Sabadello
To: Philipp Bolte

Sehr geehrter Herr Bolte,

Tut mir leid für die späte Antwort.

Hier meine Antworten:

1. CEO at Danube Tech (https://danubetech.com/)

2. Yes, I am working on a lot of SSI projects, e.g. the DIF Universal
Resolver, the W3C DID Core 1.0 specification, the E.U.'s ESSIF-Lab
program, the U.S.' DHS SVIP program, as well as multiple software
libraries and other community projects.

3. The most fascinating part about SSI is that is not only a
technical solution, it also asks deep political and philosophical
questions about the nature of humans, about their freedom and
sovereignty.

4. I don't really understand the question. :(I think there are a lot
of useful toolsets for developers, but it might also be confusing
since not all are fully interoperable with one another.

5. I would add verifiable-credentials-java, which was one of the
earliest implementations of Verifiable Credentials. You could also
add the Universal Issuer and Universal Verifier.

Appendix

6. I would use our own implementation verifiable-credentials-java :)
But I would also recommend vc-js (Digital Bazaar), DIDKit, and
Veramo.

7. I think personally I wouldn't use Azure AD, Identity.com
credential commons, Evernym (Verity-sdk, Connect.me), Trinsic, since
those feel a bit too corporate and "locked in".

8. The most important criterium is how involved the leaders of a
particular SSI solution are in community organizations and processes.

9. The most common problems are probably that specifications and
protocols are still changing rapidly, and that a lot of solutions are
not as interoperable with one another as they should be.

10. Thanks for your work.. Research like yours is super valuable to
make SSI solutions more accessible!

Markus

From: Philipp Bolte
To: Markus Sabadello

Sehr geehrter Herr Sabadello,

vielen lieben Dank für Ihre Antwort. Frage vier ist tatsächlich
etwas unglücklich formuliert. Letztendlich wollte ich damit
Meinungen erhalten, wie wichtig die Developer Experience (analog
zu User Experience zu verstehen) ist, bezogen auf vorhandenes
Toolset und Werkzeuge wie SDKs. Darin enthalten sein kann z.B.
ease of use, completeness & understandability of documentation,
...
Weil in der Literatur und auf diversen Meetups wird häufig über
die User Experience gesprochen, obwohl eine gute Developer
Experience in meinen Augen mindestens genauso wichtig ist, damit
gute SSI-enabled Products auf den Markt kommen. Könnten Sie
eventuell noch einen angepasst Antwort nachreichen?

Viele Grüße
Philipp

From: Markus Sabadello
To: Philipp Bolte

Appendix

Ah jetzt verstehe ich es, danke für die Erklärung :)

Ich würde sagen:

4. Developers don't like to read long technical
specifications and documentation. It is very important for
developers to be able to get started quickly, with simple
tutorials and - most importantly - examples that they can use
as a starting point for their own projects. Another critical
aspect for developers is how quickly they can get support
e.g. via Github issues or regular community meetings where
questions can be asked.

lG
Markus Sabadello

D Conversation with Stefan Adolf

From: Stefan Adolf
To: Philipp Bolte

Hey Philipp,

hier kommen ein paar Antworten :) Schönes Wochenende!

1. What is your job title? (Developer, Researcher, ...)
> I'm "Developer Ambassador" at Turbine Kreuzberg which is a union of
a fullstack development job, technical and public writing and
communication / community building tasks.

2. Are you currently working on anything SSI-related?
> absolutely. We're evaluating the space by building Proof of
Concepts for immunization credentials. We as well have built
prototypes using fully trustless libraries (3box which is deprecated
now) and are in close contact with some major players (e.g. Jolocom,
Main Incubator, ceramic). Turbine Kreuzberg is an application
development service company and not a technology driver in that
sense: we're trying to figure out what's going to be a requirement
for our customers in the near future and implement solutions for them
along services we find to be suited for each case.

3. What fascinates you about SSI?

Appendix

> getting rid of federated login systems and centralized profiling is
one thing - the idea that few companies own all my information and
are able to correlate at will is quite intimidating. I like the idea
that by just using cryptographic primitives and adding trust anchors
I can start trusting people - and thanks to the 2020s tech stack it's
quite useable. On the other hand SSI will allow us to connect
official endpoints in a privacy preserving way without the need to
disclose anything besides what's needed. That's going to
revolutionize the way we're interacting with administrations or
health officials and it's absolutely interoperable with decentralized
applications so we will use SSI to interact with data and code that's
not running on infrastructure that's controlled by a company we don't
really know.

4. What value would you attribute to the experience of a developer
concerning > its available toolset for the successful implementation
of SSI products?
unsure if I get that question right. If it's about "what should you
know as a dev to get started?" I'd say it'd be helpful to have a good
understanding of encryption / hashing libraries or methods. If you
know the ins and outs of e.g. JWT based authentication flows, you're
already close to what you technically need to know to start
implementing along SSI specs. An outstanding change of thinking is
that you must get rid off the notion of an "user profile" in your
system and replace it with a trusted authenticated and authorized
interaction role.

5. Looking at the spreadsheet, what additions or changes would you
make?
> There is no spreadsheet ;) (forgot to attach?)

6. If you were a developer at a company looking to integrate
Verifiable Credentials into their products, which three solutions
would you look at and why?
Jolocom - they're thinking ahead (but lack a compatible
implementation right now) and don't depend on the absurdly complex
Sovrin / Indy stack
Trinsic - they already have everything in place, great docs, BBS+
sigs, APIs, registries etc.
Evernym/Verity - in terms of interoperability it's highly likely that
they'll be compatible with everything else (in Germany e.g. IDUnion)

7. Which ones wouldn't you use and why?

Appendix

> I would avoid using Indy/Sovrin rooted SSI solutions whenever
possible (that's 70% of them all) since their DLTs are controlled by
consortia. Since I'm a public/permissionless maximalist I would
always prefer to use a solution that's fully open, community
governed, open for change and transparent.

8. What do you consider essential criteria for selecting a good SSI
solution for implementing Verifiable Credentials?
> A good and feature-complete implementation of DIDComm standards
(yet to be defined) will be key for useability and acceptance. It's
absolutely mandatory that SSI sBesides one should consider the amount
of supported key formats and algorithms and potentially encodings
(CBOR will play a role for efficiency). JSON-LD support is likely an
issue if one needs to support selective disclosures but the most
prominent key is: the solution must be governed in a way that
maximizes community contributions and has a decent developer
experience. Since standards are moving and developing fast, all
implementers of SSI products must stay up to date, fast.

9. What do you think are common problems existing SSI solutions for
developers have?
> Many are built around closed schema ecosystems that force
developers through an onboarding process, rendering some of the
advantages of a decentralized / trustless ecosystem obsolete. The
choice of wallets and registries is absolutely overwhelming at the
moment, the only thing carved in stone are specs for DIDs and VCs in
general. On the backend developers must get rid of "account" thinking
which will lead to major refactorings on how authentication and
authorization works in applications. Lastly, the highly asynchronous
concepts of DID interactions will add a lot of complexity since the
well known request - response API pattern is going to be replaced by
messaging oriented communications. Personally I think that there's a
lot of tutorial / example and documentation work to be done by all
projects alike.

10. Is there something you still want to say?
> The faster we join the movement, the further ahead we're going to
be. SSI is here to stay and people are adopting it. Lots of
traditional identity providers (in Germany particularly adminstrative
ones, like Bundesdruckerei) must either massively invest in bridges
for their centralized identity or take part in the movement, now. Bdr
is actually doing so and started thinking about trusted VC registries
and wrapped ID card credentials & they're working on an ESSIF bridge
for common eIDAS identities ("Personalausweis") as well.

Appendix

From: Philipp Bolte
To: Stefan Adolf

Hallo Stefan,

wow, danke für deine tollen und ausführlichen Antworten und dass
du dir die Zeit genommen hast. Echt klasse! Kurze Nachreichung
meinerseits:

Die Frage mit der Developer Experience ist tatsächlich nicht ganz
präzise gestellt. Ich beziehe mich in der Frage nicht auf das,
was man als Entwickler wissen muss, sondern auf den Prozess der
Implementierung. Also wie einfach nutzbar z.B. eine SDK ist und
wie gut die Dokumentation ist. Developer Experience ist also
analog zu User Experience (UX) zu sehen. Ich habe die Frage nur
eingebaut, weil in vieler Literatur und diversen Talks oft über
die User Experience gesprochen wird aber doch eigentlich die
Developer Experience zu erst da sein muss. Gute Developer
Experience, in Usability der Tools & Docus, führt meiner Meinung
nach viel eher zu guten Produkten mit toller UX.

Die PDF (Tabelle) habe ich jetzt noch mal angehängt und bin
gespannt auf deine Antworten. :)

Was mir beim Lesen noch aufgefallen ist, dass du zum einen sagst,
Indy/Sovrin rooted SSI solutions zu vermeiden aber auf der
anderen Seite Everynm und Trinsic empfiehlst. Trinsic ließ sich
in meinen Tests tatsächlich sehr einfach nutzen und bietet ein
tolles Paket an, aber Trinsic und Evernym fußen soweit ich weiß
auf Sovrin (did:sov). Vielleicht kannst du das noch mal etwas
spezifizieren, oder wolltest du einfach ein paar objektive
Vorschläge geben?
Mich würde auch interessieren, unabhängig von den Fragen, was du
von MATTR, Azure AD (ION) und, ich nenne sie mal nicht-Wallet
Lösungen wie Veramo oder DIDKit hältst.

Dir auch ein tolles Wochenende und ich freue mich auf deine
Antworten nächste Woche!

Viele Grüße
Philipp Bolte

From: Stefan Adolf

Appendix

To: Philipp Bolte

"dass du zum einen sagst, Indy/Sovrin rooted SSI solutions zu
vermeiden aber auf der anderen Seite Everynm und Trinsic
empfiehlst. Trinsic ließ sich in meinen Tests tatsächlich
sehr einfach nutzen und bietet ein tolles Paket an, aber
Trinsic und Evernym fußen soweit ich weiß auf Sovrin
(did:sov)."

Hey, ja, das meinte ich: also, ich behaupte, dass
Evernym/Verity und Trinsic definitiv eine Rolle spielen
werden und man sie sich deswegen definitiv anschauen muss.
Weil ich aber irgendwie kein Freund dieses absurd
komplizierten und irgendwie doch ziemlich beschränkten
Indy-Protokolls bin (vor allem, weil ich einfach nicht die
Muße habe, mich damit auseinanderzusetzen und Sidetree ja
tatsächlich eine imho absolut plausible Alternative
darstellt), würde ich es selbst eher ungern einsetzen ;)

Bei Veramo und DIDKit klingelt bei mir spontan nix (wenn
Veramo uPort ist, ists imho eine Level 1-DID und sowas kann
man auf Ethereum-Netzen vermutlich nicht wirklich sinnvoll
betreiben, aber vllt täusch ich mich auch :D); ich bin aber
durchaus gespannt, ob Jolocom u.a. es hinkriegen, das
KERI-Protokoll soweit zu bringen, dass man den Nachweis über
Key Rotations durch eine P2P-Kommunikation zwischen den
Clients nachweisen kann ("Micro Ledger"). Mattr ist neben
Transmute Technologietreiber hinter den Protokollen und sie
haben auch fleißig an DIDs und VCs mitspezifiziert. Ob ihr
SDK wirklich gut ist, kann ich nicht beurteilen, ich benutze
aber von Transmute eine ganze Menge Bibliotheken. ION bzw
Sidetree (ich nutze Element auf Ethereum, weil es keinen
Bitcoin Fullnode erfordert :D) find ich äußerst spannend und
absolut zukunftsweisend, aber es beschreibt imho vorrangig
einen abstrakten Anker-Layer für Ledger und wird nur in der
Bitcoin-Ausprägung (Microsoft) gerade aktiv vorangetrieben.
Ein ähnliches Modell mit deutlich mehr Gehirschmalz für
Dokumenten-Schemas und Indexing verfolgt IDX/Ceramic und da
ich die Leute (vormals 3box/uport) dort persönlich kenne,
liegt mir das näher als Microsofts Lösung ;)

Hoffe, das hilft :)

From: Philipp Bolte

Appendix

To: Stefan Adolf

Deinen Standpunkt zu den Indy-Lösungen kann ich absolut
verstehen. Ich bin vor 7 Jahren durch Bitcoin in den
Decentralized Space gekommen, weshalb auch mir diese
ganzen Konsortien-Lösungen grundsätzlich erstmal
missfallen. Aber durch die Arbeit kann ich das erstmal
ausblenden und schauen, womit man als Entwickler
grundsätzlich am weitesten kommt und was wichtig ist. :)

Hinter Veramo steht Serto (ehemals uPort), dahinter
Consensys, soweit ich weiß. Mit uPort hat das glaube ich
aber nicht mehr viel zu tun. Ich habe Veramo jetzt schon
etwas ausprobiert und bin ehrlich gesagt angetan vom
Ansatz. Man kann grundsätzlich DIDs und VCs/ VPs
erstellen und verwalten in einem lokalen Agenten. Durch
Plugins lässt sich Unterstützung für diverse DID methods
wie did:ion/ethr/web/key und Dinge wie DIDcom und DIDJwt
Support nachrüsten. Das Versprechen ist kein Vendor
lock-in und interop. Nur die Dokumentation ist so gut wie
nicht vorhanden bzw. veraltet. (Was ich sehr oft sehe,
geht das nur mir so?)

Ich möchte deine „Gastfreundschaft“ absolut nicht
überstrapazieren, also bitte setze ein Ende, wenn du dir
die Zeit nicht mehr nehmen kannst für unsere
Konversation. Es ist nur so spannend deine Gedanken und
Erfahrungen zu hören! :)
Was meinst du mit Level 1-DID? Beziehst du dich auf den
Trust over IP Stack? Also dass es hier nur um Utilities
geht, die zur Erstellung und Verwaltung von DIDs genutzt
werden? Ich glaube Veramo geht da weiter, DIDKit geht
nicht weiter als Erstellung und Verifizierung von DIDs
und VCs/ VPs.

Von Daniel Buchner meine ich gehört zu haben, dass man
wohl ION auch mit einem pruned Node betreiben kann. Habe
ich jetzt aber noch nicht verifizieren können. ;) KERI
und IDX/Ceramic habe ich mit mal aufgeschrieben zum
Nachlesen.

Eine gute Woche dir!

Philipp Bolte

Appendix

From: Stefan Adolf
To: Philipp Bolte

Hey Philipp,

all good, ich hab Zeit dafür, das ist genau genommen
sogar Bestandteil meines Jobs :D

Ich hab mir gerade die Veramo-Docs angeschaut. Das
ist in der Tat der vielversprechendste Ansatz von
allen, weil sie alles in ihrer Bibliothek pluggable
gestaltet haben. Das wenigste davon ist fertig, aber
ich bin schon ziemlich geflashed, dass sich endlich
mal jemand traut, das gut zu abstrahieren. Ich hab
für unseren "Universal Verifier" einen ähnlichen
Ansatz verfolgt (Demo ab Min 16), aber ich alleine
kann definitiv nicht so gut APIs gestalten wie die
das tun :D Sie supporten ja auch nur die einfachsten
DID-Methoden von allen und ihre
DIDComm-Implementierung sieht far from vollständig
aus :D Aber das hat definitiv Potenzial!

Also, als ich das letzte Mal versucht hab, einen ION
Node aufzusetzen, sagte die Dokumentation, dass man
dafür einen Full Node bräuchte (ich bin kein
Bitcoin-Experte, meine Welt ist Ethereum, aber der
Hinweis "sync takes ~2hs for testnet" deutet darauf
hin, dass man das "echte" Ding braucht. Ich hab mir
damals einen Zugang bei AnyBlock eingerichtet und
dann festgestellt, dass das nicht reicht, weil ION
Zugriff auf den (lokalen) Statetree der Chain braucht
:(

Appendix

MIt "Level-1" DIDs meine ich sowas wie did:ethr oder
did:evan, also DIDs, die man unmittelbar auf der
Chain verankert. Das ist extrem praktisch, dezentral
und unkompliziert, weil man einfach nur Key Rotations
etc auf den Ledger schreiben muss, aber natürlich
würde das nie on scale funktionieren -> deswegen hat
man ja IDX und Sidetree "erfunden" :) Indy/Sovrin ist
im Grunde auch sowas, nur dass die einfach eine
dedizierte Blockchain nutzen (und vermutlich hoffen,
dass sie nie so erfolgreich werden, dass die ganze
Welt eine did:sov haben will :D). Am Ende des Tages
skaliert Blockchain-Technologie im Layer 1 einfach
nicht, egal wie viele dPoS-Konsensus-Modelle man sich
ausdenkt - auch weil die Chain selbst ja immer nur
wächst. Um das zu lösen, braucht man eine Layer
2-Lösung wie Sidetree :)

Was ToIP wirklich macht, hab ich bis heute nicht so
richtig verstanden :D Das ist ja eher ein Ökosystem /
Initiative als eine Technologie (ich kenne Paul
Knowles aus den CCI-Working Group Meetings, der ist
da glaube ich stark involviert). Was ich kenne (und
das wird tatsächlich von einigen meiner
Gesprächspartner als sinnvoll angesehen), ist did:web
- man nutzt einfach den herkömmlichen "Domänen"-Trust
des Webs, um DID-Dokumente von einer bekannten,
SSL-zertifizierten, zentralen Stelle abzurufen. Das
hat natürlich wenig mit Dezentralisierung zu tun,
aber charmant ist der Ansatz auf alle Fälle, weil es
0 Onboarding-Kosten gibt und es sich einem indischen
Zollbeamten vergleichsweise leicht erklären lässt,
dass er Credentials, die eine "drk.de"-ID ausgestellt
hat, ziemlich sicher vertrauen kann. Spherity / SAP
bewegt sich gedanklich zB in diese Richtung.

Puh, a lot :D

Beste Grüße

E Conversation with Kamal Laungani
From: Kamal Laungani
To: Philipp Bolte

Appendix

Here are the answers to your questions:
1. What is your job title? (Developer, Researcher, ...)
> Lead, Global > Developer Ecosystem @ Affinidi

2. Are you currently working on anything SSI-related?
> Yeah, enabling wide adoption of SSI / VC enabled applications
through this ecosystem initiative

3. What fascinates you about SSI? The fact that the end user can have
full lifecycle control over their identity and credentials.
> SSI puts user at the center instead of centralized data hoarders.

4. What value would you attribute to the experience of a developer
concerning its available toolset for the successful implementation of
SSI products?
> I'm not sure if I understand this question. Having a step by step
technical guide is a pre-requisite for adoption of VCs / SSI

5. Looking at the spreadsheet, what additions or changes would you
make?
> Looks like a good start

6. If you were a developer at a company looking to integrate
Verifiable Credentials into their products, which three solutions
would you look at and why?
> Affinidi and Mattr - they both provide extensive and openly
available building blocks which are actively maintained. Plus they
have a support system to enable developers with answers to their
questions

7. Which ones wouldn't you use and why? Haven’t heard of some of
these.
> Jolocom has a niche within SSI ecosystem, they work on low level
DID methods targeting the layer 1 of the trust over IP stack. They
are a utility and do not help developers integrate VCs

8. What do you consider essential criteria for selecting a good SSI
solution for implementing Verifiable Credentials?
> Full coverage of technical user flows around issuing, holding,
sharing, and verifying credentials. Good support. Free and/or open
source.

Appendix

9. What do you think are common problems existing SSI solutions for
developers have?
> The industry is very young and tech innovation focused. There's not
enough innovation happening in order to activate business use cases.

F Conversation with Johannes Sedlmeir
From: Johannes Sedlmeir
To: Philipp Bolte

Lieber Herr Bolte,

Inline meine Anmerkungen – ich hoffe sie helfen weiter und ich würde
mich freuen, wenn Sie mir Ihre Ergebnisse der Arbeit zukommen lassen
könnten.
Falls Sie Rückfragen haben, können Sie mir diese gerne stellen.

Beste Grüße
Johannes Sedlmeir

1. What is your job title? (Developer, Researcher, ...)
> PhD student and consultant (researcher at Fraunhofer FIT and FIM
Research Center, University of Bayreuth)

2. Are you currently working on anything SSI-related?
> Yes

3. What fascinates you about SSI? The fact that the end user can have
full lifecycle control over their identity and credentials.
> Potential for resolving inefficiency, surveillance, & security
problems in digital identity management and using fancy cryptography
to do that (like ZKPs)

4. What value would you attribute to the experience of a developer
concerning its available toolset for the successful implementation of
SSI products?
> I do not fully understand this question. A developer needs a
thorough understanding of PKI / asymmetric encryption and the
willingness to look at and compare many different solutions. And
should not get distracted by the blockchain-focus that many
SSI-projects have but that technically speaking is not needed.

Appendix

5. Looking at the spreadsheet, what additions or changes would you
make?
> Transfer of a credential is often not desirable (holder binding). I
regard delegation/chained credentials a better solution for the need
of forwarding permissions. The spreadsheet also does not include one
aspect that is probably THE most relevant about SSI, namely, privacy.
Revocation registries can be very problematic in terms of privacy,
and selective disclosure and the uncorrelatability of presentations
(often violated through the repeated use of a holder’s unique public
key or the value of the signature) should be respected. It also seems
that the list may be incomplete, although maybe I am not fully aware
of the name of the toolkit for some projects, they might not be
available open-source or they might have another scope than what you
are focusing on. Just as a suggestion, you could have a look at
Hyperledger Aries (e.g., aca-py), Verifiable Credentials Ltd,
Microsoft ION, Gataca, Everest, ESSIF

6. If you were a developer at a company looking to integrate
Verifiable Credentials into their products, which three solutions
would you look at and why?
> Hyperledger Indy/Aries because of ZKP for revocation and selective
disclosure and a rich ecosystem of wallets; MATTR because of their
support of ZKPs while complying with the W3C VC standard and their
strong research focus; a third one that does not use a blockchain for
the issuer-related PKI

7. Which ones wouldn't you use and why? Haven’t heard of some of
these.
> Hyperledger Indy/Aries because of the above-mentioned reasons

8. What do you consider essential criteria for selecting a good SSI
solution for implementing Verifiable Credentials?
> Availability of a mature mobile wallet, support by government
initiatives like VON or IDUnion. Focus on privacy features instead of
blockchain.

9. What do you think are common problems existing SSI solutions for
developers have?
> Lack of maturity and documentation, no NIST standards and audits
for the cryptography (particularly ZKPs), lack of chained
credentials/delegation, lack of interoperability with legacy PKI,
scalability of privacy-preserving revocation, too many non-compatible
solutions

Appendix

10. Is there something you still want to say?
> No

From: Philipp Bolte
To: Johannes Seldmeir

Hallo Herr Sedlmeir,

vielen Dank für Ihre schnelle Antwort! Ich hätte noch drei kleine
Nachfragen:

Zu Frage 4 der Developer Experience: Hier geht es nicht um die
Erfahrung im Sinne des Wissens eines Entwicklers, sondern im
Sinne der Leichtigkeit des Entwicklungsprozesses. Im Grunde ist
der Begriff Developer Experience analog zur User Experience (UX)
zu sehen. Inwieweit ändert sich Ihre Antwort dann? Im Grunde
deuten Sie Ihre Antwort schon in Frage 9 mit „maturity and
documentation“ an.

Zu Frage 5 der Tabelle: Vielen Dank für den Input der Privacy.
Ziel ist jedoch im Grunde erst einmal zu prüfen, inwieweit
bestehende SDKs, Bibliotheken, ... den Lifecycles eines VCs (nach
w3c spec) abbilden können. Aber ich werde mal schauen, wie ich
Ihren Vorschlag integrieren kann. Zudem geht es grundlegend um
SDKs, Bibliotheken und Plattformen, mit denen man VCs erstellen,
verifizieren und evtl. noch an ein Wallet senden kann. Aca-py ist
sicher ein guter Vorschlag, muss mich aber in den Hyperledger
Aries/ Indy Stack noch tiefer einlesen.

Zu Frage 7: Vielleicht habe ich Sie missverstanden, aber bei der
Frage geht es um Lösungen, die Sie _nicht_ verwenden würden. Den
Hyperledger Aries/ Indy Stack scheinen Sie aber zu favorisieren.

Beste Grüße
Philipp Bolte

From: Johannes Sedlmeir
To: Philipp Bolte

Lieber Herr Bolte,

Appendix

Zu Frage 4 der Developer Experience: Die „Developer
Experience“ ist in meinen Augen für manche Projekte bereits
in Ordnung, wenn man das „Bootstrapping“ (bspw. Verbindung
mit einer Blockchain) gemeistert hat (wie bspw. aca-py), aber
das Kombinieren unterschiedlicher sdks gestaltet sich sehr
schwierig. Vor allem die Kompatibilität von Agents und
mobilen Wallets scheint mir oft eine Herausforderung, weil
man leider nicht einfach einen bestehenden Agent direkt in
eine mobile Wallet umwandeln kann und dann ein
funktionierendes und kompatibles Gesamtsystem hat.

Zu Frage 5 der Tabelle: aca-py sollte definitiv diese
Anforderungen erfüllen; gemeinsam mit den mobilen Wallets von
esatus / trinsic / ...

Zu Frage 7: Das habe ich dann wohl in der Eile falsch
gelesen. Ich würde keine Lösung wählen, bei der DIDs oder VCs
von Personen auf einer Blockchain gespeichert werden oder bei
denen nicht in irgendeiner Weise eine mobile wallet app
unterstützt wird. Letzteres, da ja im Server-Bereich schon
Standards für Zertifikate (X.509) bestehen und die
Anwendbarkeit für End-User eigentlich die Neuheit ist, sodass
die mobile wallet in meinen Augen DIE zentrale Komponente
ist.

For my best friend
Oscar

17.04.2002 – 03.08.2021

	Introduction
	Scope of Work
	Related Work
	Methodology

	Self-sovereign Identity
	Identity
	Stages of Digital Identity
	Centralized Identity
	Federated Identity
	User-Centric Identity
	Self-sovereign Identity

	Standards
	Decentralized Identifier
	Verifiable Credentials

	Architecture
	Roles
	Technology Stack

	Recent Developments
	DIDComm
	BBS+
	RevocationList2020

	Expert Questionnaire
	Preparation
	Questionnaire
	Results

	Reference Implementation
	Provider
	Core Principles
	Routes
	Factory
	Provider Integration
	Mattr
	Trinsic
	Veramo
	Azure

	Results

	Evaluation Framework
	Requirements
	Framework
	Results

	Conclusion
	Bibliography
	Appendix

